Department of Electrical Engineering

College of Engineering Trivandrum

Lab Manual

Microprocessors and Microcontrollers Lab

(2019 scheme)

Department of Electrical Engineering

College of Engineering Trivandrum

This is a controlled document of the Department of Electrical Engineering of College of

Engineering Trivandrum, Thiruvananthapuram. No part of this can be reproduced in any
form by any means without the prior written permission of the professor and the Head of the

Department of Electrical Engineering, College of Engineering Trivandrum.

Prepared By Verified By Approved By

Dr. Lekshmi Mohan Prof. Vipin VA HOD

Prof. Sohan Placid John

VISION

National Level Excellence and International Visibility in Every Facet of Engineering Research
and Education.

MISSION

To facilitate quality transformative education in Engineering and Management.
To foster innovations in Technology and its application for meeting global challenges. To

pursue and disseminate Quality Research. To equip, enrich and transform students to be
responsible professionals for better service to humanity.

DEPARTMENT OF ELECTRICAL ENGINEERING

VISION

Be a centre of excellence and higher learning in Electrical Engineering and allied areas.

MISSION

To impart quality education in Electrical Engineering and bring-up professionally competent
engineers.

To mould ethically sound and socially responsible Electrical Engineers with leadership
qualities.

To inculcate research attitude among students and encourage them to pursue higher studies.

Program Qutcomes

PO1

Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems

PO2

Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.

PO3

Design/development of solutions: Design solutions for complex engineering problems and
design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental
considerations

PO4

Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis
of the information to provide valid conclusions

POS

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering
activities with an understanding of the limitations.

PO6

The engineer and society: Apply reasoning informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant
to the professional engineering practice.

PO7

Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and
need for sustainable development

PO8

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

PO9

Individual and team work: Function effectively as an individual, and as a member or leader
in diverse teams, and in multidisciplinary settings

PO10

Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and
write effective reports and design documentation, make effective presentations, and give
and receive clear instructions.

PO11

Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member
and leader in a team, to manage projects and in multidisciplinary environments

PO12

Life-long learning: Recognize the need for, and have the preparation and ability to engage
in independent and life-long learning in the broadest context of technological change

Program Specific Qutcomes

PSO1

Apply engineering knowledge to analyse, model, design and operate modern systems for
generation, transmission, distribution and control of electrical power.

PSO2

Design, develop and test modern hardware and software systems for signal processing,
measurement, instrumentation and control applications.

Course Objectives

1. Familiarize and program microprocessors and microcontrollers.
2. Hardware implementation of the embedded systems.

Course Outcomes (COs)

At the end of the course students should be able to:

Bloom’s
Course Outcome Knowledge
Level (KL)
CO1 | Develop and execute assembly language programs for solving arithmetic and K4
logical problems using microprocessors/ microcontrollers.
CO2 | Design and Implement systems with interfacing circuits for various K4
applications.
CO3 | Execute projects as a team using microprocessors / microcontroller for real K3
life applications.

Note: KI-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping (Mapping of Course Outcomes with Program Qutcomes)

POl | PO2 | PO3 | PO4 | POS | PO6 | PO7 | PO8 | PO9 | PO10 | POI11 | POI2 | PSO1 | PSO2
COl |3 3 2 3 2 3 2 3 3 2 3
CO2 |3 3 2 3 2 3 2 3 3 2 2
CO3 |3 3 2 2 2 3 3 3 3 3 2 2

1:Slight (Low), 2:Moderate(Medium), 3:Substantial (High),-:No Correlation

List of Experiments

E;;(})) Title of experiment
1. Study of Internal Architecture of 8085 Microprocessor and Pin diagram
2. Data Transfer using Different Addressing Modes and Block Transfer
3 Arithmetic Operations in Binary and BCD: Addition and Subtraction
4. Arithmetic Operations: Multiplication and Division
5. Binary to BCD Conversion and BCD to Binary Conversion
6. Logical Operations
7. Digital I/O using PP1-Square Wave Generation
8. Interfacing D/A Converter : Generation of Simple Waveforms- Triangular, Ramp
9. Blinking Internal LED of Arduino UNO module
10. | Arduino Based Voltage Measurement
11. | Introduction to 8051 Microcontroller
12. | Data Transfer: Block Data Movement, Exchanging Data
13. | Arithmetic Operations: Addition, Subtraction, Multiplication, Division
14. | Implementation of Boolean and Logical Instructions

15.

Counters: Hexadecimal and BCD Counters

EXPERIMENT 1

STUDY OF INTERNAL ARCHITECTURE OF 8085

MICROPROCESSOR AND PIN DIAGRAM

A microprocessor is a multipurpose, programmable logic device that reads binary instructions
from a storage device called memory, accepts binary data as input and processes data according
to those instructions and provides result as output. It includes an Arithmetic / Logic unit (ALU),
a control unit and an array of registers as a small internal memory for holding data while it is
being manipulated or processed. It is a general-purpose device which may be used for different

purposes in different applications. Configuration of the system is flexible.

INTA

RST 6.5

TRAP

INiR TRSlS.S RST7.5

Interrupt control

ﬁA

SID

SOD

Senial 1/0 control

ﬁA

8-Bit Internal data bus

H E E I M i
B C
” ’ REG REG
emp lag Instruction |¢¢ D E
Accumulator reg flip-flops register REG REG
H L
REG REG
+ * ? * ﬂ Stack pointer
Arithmetic Instruction Program counter
logic decoder and
> unit machine |4 Incrementer/
(ALU) cycle decrementer
encoding address latch
X; X, GND +5V ot
R Il ==l
CLK Address Adg;f:y
GEN Control Status DMA Reset bufter buffer
CLK GEN READY RD WRALE S, S,10/M HOLD HLDA RESET IN RESET OUT A,lﬁlAn AD,-AD,

Fig 1.1 Hardware Architecture of 8085

INTERNAL ARCHITECTURE
ALU
The Arithmetic and logic unit (ALU) performs various arithmetic and logic operations like
Addition, Subtraction, Logical AND, Logical OR, Logical exclusive OR, complement (Logical
NOT), Increment (Add 1), Decrement (Subtract 1), Left shift (add input to itself) and clear
(result is zero).
REGISTERS
Registers are small memories within the CPU. They are used by the microprocessor for
temporary storage and manipulation of data and instructions. Data remain in the registers till
they are sent to the memory or 1/O devices.
Registers of 8085 are

e One 8-bit accumulator (ACC) ie, register A.

e Six 8-bit general purpose registers — B, C, D, E, H and L.

e One 16-bit program counter — PC.

e Instruction register — IR.

e Status register — Flag register

e One 16-bit Stack Pointer — SP.

e Temporary register — W and Z.
ACCUMULATOR
The accumulator, one of the most important 8 - bit registers of 8085, is mainly used for
arithmetic, logic and rotate operations. The primary purpose of this register is to store
temporary data and for the placement of final values of arithmetic and logic operations. It holds
one of the operands.
GENERAL PURPOSE REGISTER
There are 6 general purpose registers in the 8085 processor, i.e. B, C, D, E, H& L. Each register
can hold 8-bit data. These registers can work in pairs to hold 16-bit data and their pairing
combination is like B-C, D-E & H-L. The H-L pair works as a memory pointer.
FLAG REGISTERS
The flag register is a group of flip-flops used to give the status of the result of different
operations. The flag register in 8085 is an 8-bit register which contains 5 bit positions. These
five flags are 1-bit F/F and are known as sign, zero, auxiliary carry, parity and carry.
CY - Carryflag, it is set when carry is generated and otherwise, it is reset.
Z — Zero flagis set if the result of an operation is zero otherwise it is reset.
S — Sign flag, Signed number is negative if S = 1 and positive if S = 0.
P — Parity flag, it is set for even parity and reset for odd parity.
AC - Auxiliary Carry flag is used for BCD operations. It is set when a carry is generated
by digit D3 and passed to D4.
TEMPORARY REGISTER
There are 2 temporary registers, W and Z. It is also called operand register (8-bit). 8085 uses
them internally to hold data temporarily during the execution of some instructions.
SPECIAL PURPOSE REGISTERS
It consists of three 16 bit registers — Program counter, Stack pointer, Incrementer / Decrementer
Latch.

PROGRAM COUNTER
It holds the address of the next instruction to be executed to save time.
STACK POINTER
Stack is a portion of memory (RAM), that works in the LIFO concept. The stack pointer
maintains the address of the last byte that is entered into the stack. Each time when the data is
loaded into the stack, the Stack pointer gets decremented.
INCR/DECR LATCH
It is used to increment or decrement the content of program counter and stack pointer register.
ADDRESS / DATA BUFFER and ADDRESS BUFFER
The contents of the stack pointer and program counter are loaded into the address buffer and
address — data buffer. These buffers are then used to drive the external address bus and address—
data bus. As the memory and I/O chips are connected to these buses, the CPU can exchange
desired data to memory and 1/O chips. The address data buffer can both send and receive data
from internal data bus.
CONTROL UNIT
It performs data transfer and decision-making operations.
It consists of :

e Instruction Register

e Instruction Decoder

e Timing and Control unit

INSTRUCTION REGISTER

When an instruction like adding two data, moving a data, copying a data etc is fetched from
memory, it is directed to the instruction register. So instruction registers are specifically to store
the instructions that are fetched from memory.

INSTRUCTION DECODER
It decodes the information present in the instruction register for further processing. It then sends
the decoded information to the timing and control unit.

TIMING AND CONTROL UNIT
It synchronizes the registers and flow of data through various registers and other units. This
unit consists of an oscillator and sends control signals needed for internal and external control
of data and other units. The oscillator generates clock signals.
Signals that are associated with this unit are:

e Control signals: READY, RD, WR, ALE

e Status signals: SO, S1, I0/M

e DMA signals: HOLD, HLDA

e Resetsignals: RESETIN , RESET OUT

CONTROL AND STATUS SIGNALS
e RD - Read (active low) — Indicate that 1/0O or memory selected is to be read and data
are available on the bus.

e WR — Write (active low) — Indicate that data available on the bus are to be written to
memory or 1/O ports.
e |0/M - Differentiate 1/0 operation or memory operations.
0 — indicates a memory operation
1 —indicates an 1/0 operation
e S1 and SO — Status signals, tells current operation.

INTERRUPT CONTROLLER
Interrupt signals present in 8085 are:

1. INTR

2. TRAP

3. RST75

4. RST6.5

5. RST55
Whenever the interrupt signal is enabled or requested, the microprocessor shifts the control
from the main program to process the incoming request. After the request is completed, the
control goes back to the main program.
SERIAL 1/O CONTROL
The input and output of serial data can be carried out using two instructions in 8085:

1. SID - Serial input data

2. SOD - Serial output data
Data on these line is accepted or transferred under software control by serial 1/0 control block,
by using special instructions RIM & SIM.

8085 PIN DIAGRAM

8085 is an 8-hit, NMOS microprocessor. It is available as a 40-pin I1C package fabricated on a
single LSI chip. It uses a single +5V DC supply for its operation. 8085 microprocessor has a
clock speed of about 3 MHz and the clock cycle is of 320ns. It has about 6500 transistors. It
has 80 basic instructions and 246 opcodes. It consists of three main sections, arithmetic and
logic unit, timing and control unit and several registers.

Y, Y
Xy =il — =
Crystd Input J X n - HLOA]
l x) — 39 fe—)
Reset Our 4=t 3 33 M——HOLD
5 N| fp CLEOUT
Serial 1/0 % 4
SO0 @5 3 jg—RESETIN Timing and
7 TRAP et 6 35 M REALY k Control dgnds
RST7S =il 7 U e O/
RSTES e 3 >,
Interrupts INTEL T
RETSS mppy 9 32 R0
INR ——pii0 BO0BSA . | o
r ADy <412 29—,
ADy A] 13 % :,'\AU
ADy —n{14 57 =2
AI\;' AD AD. E — 15 % ‘EA“
Address Data A 5 o A N0
e 1 AE‘! <16 ol == { Address bus
N7 24 Ay
AD; «—={18 n =/
ADy 19 2 =M
\ V: JE— 20 21 v—-«fg

A8-A15 (Output):-
These are address bus and used for the most significant bits of memory address.

ADO-AD7 (Input/OQutput):-

These are time-multiplexed address data bus. These are used for the least significant 8 bits of
the memory address during first clock cycle and then for data during the second and third clock
cycle.

ALE (Address Latch Enable):-
It goes high during the 1st clock cycle of a machine. It enables the lower 8 bits of address to
be latched either in the memory or external latch.

IO/M:-
It is status signal, when it goes high; the address on address bus is for I/O device, otherwise
for memory.

SO, S1:-
These are status signals to distinguish various types of operation.

S1 SO Operations

0 0 Halt

0 1 Write

1 0 Read

1 1 Opcode Fetch

RD (output):-
It is used to control read operation.

WR (output):-
It is used to control write operation.

HOLD (input):-
It is used to indicate that another device is requesting the use of the address & data bus.

HLDA (output):-
It is an acknowledgement signal used to indicate HOLD request has been received.

INTR (input):-
When it goes high, the microprocessor suspends its normal sequence of operations.

INTA (output):-
It is an interrupt acknowledgement signal sent by the microprocessor after INTR is received.

RST 5.5, 6.5, 7.5 and TRAP:-
These are various interrupt signals. Among them, TRAP is having highest priority.

RESET IN (input):-
It resets the PC to zero.

RESET OUT (output):-
It indicates that the CPU is being reset.

X1, X2 (input):-
This circuitry is required to produce a suitable clock for the operation of microprocessor. .

CIk (output):-
It is clock output for the user. Its frequency is the same at which the processor operates.

SID (input):-
It is used for data line for serial input.

SOD (output):-
It is used for data line for serial output.

Vcc:-
+5 volts supply.

V/ss:-
Ground reference.

8085MICROPROCESSOR TRAINER KIT M85-03

M85-03 kit is a single-board Microprocessor training kit based on 8085 microprocessor.
It provides monitor EPROM and user’s RAM with battery backup. The kit has 28 keys
hexadecimal keyboard and six digit seven segment displays for display. The kit also has
the capability of interacting with a PC through an RS-232C serial link. The Input/Output
structure of M85-03 provides 48 programmable 1/0 lines using 8255.

PROCEDURE

EXMEM(Examine memory) keyboard command is used to examine the memory locations.
To examine the contents of the location for 2500 and 2501, the following key
sequence has to be used.

RESET—-EXMEM—2500—-NEXT—2501

To enter the program

RESET— EXMEM-— Enter Starting address of program — NEXT — Enter the
machine code — NEXT

To execute the program

RESET —GO— Starting address of program—. (Dot)(Fill Key)

To check the result

RESET—-EXMEM— Enter the address of the result location

To check the reqgister content

Shift - EXREG — A/ B/C/D/E/H/L

EXPERIMENT 2

DATA TRANSFER USING DIFFERENT ADDRESSING MODES AND
BLOCK TRANSFER

1. Write an ALP for loading registers A, B, C, D, E, H and L with single-byte data
using immediate addressing and observe the register contents.

MEMORY | MACHINE
ADDRESS CODE LABEL MNEMONICS COMMENTS
2000 3E, 01 START: MVI A,01H Load A with 01
2002 06, 02 MVI B,02H Load B with 02
2004 OE, 03 MVI C,03H Load C with 03
2006 16, 04 MVI D,04H Load D with 04
2008 1E, 05 MVI E,05H Load E with 05
200A 26, 06 MVI H,06H Load H with 06
200C 2E, 07 MVI L,07H Load L with 07
Return to monitor
200E EF END: RST 05
program

2. Write an ALP for loading registers B, C, D, E, H and L with the same data
using register addressing and observe the register contents.

MEMORY | MACHINE

ADDRESS CODE LABEL MNEMONICS COMMENTS

Load accumulator

2000 3A, 50,20 | START: LDA 2050H with content of 2050

Move the content

2003 47 MOV B, A of AtoB

Move the content

2004 4F MOV C, A of AtoC

Move the content
2005 57 MOV D, A of Ao D
2006 5F MOV E, A Move the content
of Ato E
Move the content
o o MOV H, A of Ato H
2008 6F MOV L, A Move the content
of AtoL
2009 EF END: RST 05 Return to monitor
program

3. Write an ALP for loading register pairs BC, DE and HL with 16-bit data using

immediate addressing and observe the register pair contents.

MEMORY | MACHINE
ADDRESS CODE LABEL| MNEMONICS COMMENTS
2000 01,50,21 | START: LXI B, 2150H Load BC register pair with
data 2150
2003 11,51, 21 LXI D, 2151H Load DE register pair with
data 2151
2006 21,52, 21 LXI H, 2152H Load HL register pair with
data 2152
2009 EF END: RST 05 Return to monitor program

4. Write an ALP to copy a block of 8-bit data from 4 memory locations (2250-2253) to
another 4 memory locations (2254-2257) using direct addressing.

MEMORY | MACHINE
ADDRESS CODE LABEL MNEMONICS COMMENTS
2000 3A,50,22 | START: LDA 2250H Load data in 2250
to accumulator
2003 32 54 92 STA 2954H Accumulator content
- stored in 2254
2006 3A, 51, 22 LDA 2251H Load data in 2251
to accumulator
2009 32,55, 22 STA 2255H Accum_ulator data
stored in 2255

200C 3A, 52, 22 LDA 2952H Load data in 2252
to accumulator
Accumulator data

oo 32, 96.22 STA 2256H stored in 2256

2012 3A, 53, 22 LDA 2253H Load data in 2253
to accumulator
Accumulator data

o 3,50 22 STA 225TH stored in 2257

2018 EF END: RST 05 Return to monitor
program

5. Write an ALP to copy a block of 8-bit data from 4 memory locations (2250-2253) to
another 4 memory locations (2254-2257) using 16-bit data transfer addressing mode
direct addressing.

MEMORY | MACHINE
ADDRESS CODE LABEL| MNEMONICS COMMENTS
_ Data in 2250 to Lregister
2000 2A, 50, 22 | START:| LHLD 2250H and datain 2251 to H
L register contentto 2254
2003 22,54,22 SHLD 2254H and H content to 2255
Data in 2252 to Lregister
2006 2A, 52, 22 LHLD 2252H and datain 2253 to H
L register contentto 2256
2009 22,56, 22 SHLD 2256H and H content to 2257
200C EF END: | RST 05 Return to
monitor program

6. Write an ALP to transfer a block of 8-bit data from 4 memory locations (2250-2253) to
another 4 memory locations (2254-2257) using indirect addressing.

MEMORY | MACHINE
ADDRESS CODE LABEL MNEMONICS COMMENTS
2000 21.50,22 | START:|LXI H, 22504 | S€tup HL as a pointer of
source.
™ D. 2254H Set up DE as a pointer of
2003 11,54, 22 ’ destination
2006 06, 04 MVI B, 04 Set up the counter
2008 7E LOOP: | MOV A M Get data from source to
accumulator

2009 12 STAX D Store data in destination

200A 23 INX H Pomt_er to next source
location

200B 13 INX D Pomt_er to next destination
location

200C 05 DCR B Decrement counter

200D C2, 08, 20 INZ LOOP If th_e transfer is not over,
continue

2010 EF END: | RST 05 Return to monitor program

EXPERIMENT 3

ARITHMETIC OPERATIONS IN BINARY AND BCD: ADDITION AND

SUBTRACTION

1. Write an ALP to add two 8-bit numbers, sum 8 bits.

MEMORY | MACHINE
ADDRESS CODE LABEL | MNEMONICS COMMENTS
2000 21, 00, 25 START: | LXI H,2500H Initialize memory pointer
2003 7E MOV A M Load the first o_perand from
memory to register A
2004 23 INX H Increment content of H-L
pair
2005 16 MOV B, M Load the second ope_rand
from memory to register B
2006 80 ADD B Add 1% and 2" numbers
2007 23 INXH Pointer to store the result
Store result to
2008 77 MOV M, A memory
2009 EF END: RST 05 Return to Monitor program

2. Write an ALP to add two 8-bit numbers, sum 16 bits.

MEMORY | MACHINE
ADDRESS CODE LABEL | MNEMONICS COMMENTS
st i
2000 21,01,25 | START: | LXIH, 25014 | Address of 1% number in
H-L pair.
st H
2003 7E MOV A, M 1™ number in
accumulator.
Address of 2" number
2004 23 INXH 2502 in H-L pair.
Load the second operand
2005 46 MOV B, M from memory to register
B
MSBs of sum in register
2006 OE, 00 MVI C, O0H C.
Initial value = 00.

2008 80 ADD B 1% number + 2" number.
200C 0C INR C Yes, increment C.

200D 23 AHEAD: | INX H Il_n;gairrnent content of H-
200E 77 MOV M, A L\C/)I?l\w/ee r;k:)er ;asult from A
200F 23 INX H II_ntlc:)raeirrrl]ent content of H-
2010 71 MOV M, C rl\T/]Ié)r\r/]% :Se result from C to
2011 EF END: | RST 05 Return to

Monitor program

3.Write an ALP to add two16 bit numbers, sum 16 bits or more.

MEMORY

MACHINE

ADDRESS CODE LABEL | MNEMONICS COMMENTS
st _hi : _
2000 | 2A.01,25 | START: | LHLD 2501H ;a#G bit number in H-L
st P
2003 EB XCHG Ge_t 1% number in D-E
pair.
nd _ - - _
2004 | 2A,03 25 LHLD 2503H éairw bit number in H-L
2007 OE, 00 MVI C, 00H MSB_s_of sum m_reglster
C. Initial value = 00.
2009 19 DAD D 15t number + 2" number.
Is carry? No, go to the
200A D2, OE, 20 JNC AHEAD label AHEAD.
200D (0]® INRC Yes, increment C.
200E 22.05,25 | AHEAD: | SHLD 2505 4 | Store LSBs of sum in 2505
and 2506 H.
2011 79 MOV A, C MSBSs of sum in
accumulator
2012 32, 07,25 STA 2507H MSBs of sum in 2507 H.

2015

EF

END:

RST 05

Return to Monitor
program

4. Write an ALP to subtract two 8-bit numbers, difference 8 bits.

MEMORY | MACHINE
ADDRESS CODE LABEL | MNEMONICS COMMENTS
2000 21, 00, 25 START: | LXI H,2500H Initialize memory pointer
2003 7E MOV A, M Load the first qperand from
memory to register A
2004 23 INX H Increment content of H-L
pair
2005 16 MOV B, M Load the second ope_rand
from memory to register B
Subtract 2" number from
2006 90 SUBB 15 number
2007 23 INX H Pointer to store the result
Store result to
2008 77 MOV M, A memory
2009 EF END: | RST 05 Return to Monitor program

5. Write an ALP for the decimal addition of two 8-bit numbers, sum 16 bits.

MEMORY | MACHINE
ADDRESS CODE LABEL MNEMONICS COMMENTS
st H
2000 21,0125 | START: | LXIH, 25014 | Address of 1% number in
H-L pair.
st H
2003 7E MOV A, M 1% number in
accumulator.
Address of 2" number
2004 23 INXH 2502 in H-L pair.
Load the second operand
2005 46 MOV B, M from memory to register
B
MSBs of sum in register
2006 OE, 00 MVI C, 00H C.
Initial value = 00.
2008 80 ADD B 1t number + 2" number.

2009 27 DAA Decimal adjust

200D 0C INRC Yes, increment C.

200E 23 AHEAD: | INX H Il_n;gairrnent content of H-
200F 77 MOV M, A L\C/)I?:]/: r:}k:)er ;asult from A
2010 23 INX H II_ntlc:)raeirrrl]ent content of H-
2011 71 MOV M, C rl\T/]Ié)r\r/]((e):;e result from C to
2012 EF END: | RST 05 Return to

Monitor program

6. Write an ALP to add a series of 8-bit numbers, sum 16 bits.

MEMORY | MACHINE
ADDRESS CODE LABEL | MNEMONICS COMMENTS
2000 21,00,25 | START: | LXIH, 2500H Load the_address of count
to HL pair
2003 AE MOV C, M Load C with the count
value.
2004 3E, 00 MVI A, 00H LSBs of sum = 00 (initial
value)
2006 47 MOV B, A MSBs of sum = 00 (initial
value)
2007 23 LOOP: | INXH Point to next location.
2008 86 ADD M Add memory content with
accumulator.
2009 D2, 0D, 20 INC AHEAD When carry flag is 0, skip
next task.
200C 04 INR B Yes, add carry to MSBs of
sum.
200D 0D AHEAD: | DCRC Decrement C register by 1.
200E C2, 07,20 INZ LOOP When Zero flag is not set,

go to Loop.

Store LSBs of the sum in

2011 32,50, 24 STA 2450H 2450 H.
2014 78 MOV A, B Get MSBs of sum in
accumulator.
Store MSBs of the sum in
2015 32,51, 24 STA 2451H 2451 H.
2018 EF END: | RSTO05 Return to

Monitor program

7. Write an ALP to add a series of 8-bit decimal numbers, sum 16 bits.

MEMORY | MACHINE
ADDRESS CODE LABEL | MNEMONICS COMMENTS

2000 21,00,25 | START: | LXIH, 2500H Load the_address of count
to HL pair

2003 AE MOV C, M Load C with the count
value.

2004 3E, 00 MVI A, 00H LSBs of sum = 00 (initial
value)

2006 47 MOV B, A MSBs of sum = 00 (initial
value)

2007 23 LOOP: |INXH Point to next location.

2008 86 ADD M Add memory content with
accumulator.

2009 27 DAA Decimal adjust

200A D2, OE, 20 INC AHEAD When carry flag is 0, skip
next task.

200D 04 INR B Yes, add carry to MSBs of
sum.

200E 0D AHEAD: | DCRC Decrement C register by 1.

200F C2, 07, 20 INZ LOOP When Zero flag is not set,
go to Loop.
Store LSBs of the sum in

2012 32,50, 24 STA 2450H 2450 1.

2015 78 MOV A, B Get MSBs of sumin
accumulator.

2016 32,51, 24 STA 2451H Store MSBs of the sum in

2451 H.

2019

EF

END:

RST 05

Return to
Monitor program

8. Write an ALP to shift an 8-bit number left by 1 bit.

/'\A\/IEEI\)/IRE?EF;\S(Mé((;HDIENE LABEL | MNEMONICS COMMENTS
2000 3A,01,25 | START: | LDA 2501H Get data in accumulator.
2003 87 ADD A Shift it left by one bit.
2004 32,02, 25 STA 2502H Store result in 2502 H
2007 EF END: RST 05 Return to monitor program

9. Write an ALP to shift an 8-bit number left by 2 bits.

/I\A/IEI!\)/IR?EF\;\S(MéglE)“ENE LABEL | MNEMONICS COMMENTS
2000 3A,01,25 | START: | LDA 2501H Get data in accumulator.
2003 87 ADD A Shift it left by one bit.
2004 87 ADD A Sn'ft it left again by one
2005 32,02, 25 STA 2502H Store result in 2502 H
2008 EF END: | RST 05 Return to monitor program

10. Write an ALP to shift a 16-bit number left by 1 bit.

MEMORY

MACHINE

ADDRESS CODE LABEL | MNEMONICS COMMENTS
2000 2A,01,25 | START: | LHLD 2501H Get 16 bit data in HL pair.
2003 29 DADH Shift it left by one bit.
2004 22.03, 25 SHLD 2503H Store the result in 2503

and 2504 H.

2007

EF

END:

RST 05

Return to monitor program

11.Write an ALP to shift a 16-bit number left by 2 bits.

MEMORY | MACHINE

ADDRESS CODE LABEL | MNEMONICS COMMENTS
2000 2A,01,25 | START: | LHLD 2501H Get 16 bit data in HL pair.
2003 29 DADH Shift it left by one bit.
2004 29 DAD H gnlft it left again by one

Store the result in 2503

2005 22,03, 25 SHLD 2503H and 2504 H.
2008 EF END: RST 05 Return to monitor program

EXPERIMENT 4

ARITHMETIC OPERATIONS: MULTIPLICATION AND DIVISION

1. Write an ALP to multiply two 8-bit numbers stored at locations 2500H and 2501H and
the product is stored at 2502H and 2503H.

MEMORY | MACHINE
ADDRESS CODE LABEL | MNEMONICS COMMENTS

2000 21,00,25 | START: |LXIH, 2500+ | -03d H-L pairwith address
2500H

2003 46 MOV B, M Get. the first number in the B
register

2004 23 INXH Increment H-L pair

2005 AE MOV C, M Get. the second number in the C
register

2006 3E, 00 MVI A, 00H Initialise accumulator with O0H

2008 16, 00 MVI D,00H Initialise D register with 00H

200A 80 LOOP: | ADD B Ad(_j content of Accumulator to
register B.

200B D2, OF, 20 JNC AHEAD Jump on no carry to AHEAD

200E 14 INR D Increment D register if carry
present

200F oD AHEAD: | DCRC Decrement content of register C

2010 C2,0A, 20 JNZ LOOP Jump on not zero to LOOP

2013 23 INXH Increment H-L pair
Move the result from accumulator

2014 7 MOV M, A to memory location 2502H

2015 23 INXH Increment H-L pair

2016 7 MOV M., D Move the carry from D register to
memory location 2503H

2017 EF END: RST 05 Return to monitor program

2. Write an ALP to multiply a 16-bit number by an 8-bit number. Multiplicand is stored
at locations 2100H and 2101H and the multiplier is in 2102H. The product is to be
stored at 2103H and 2104H.

MEMORY

MACHINE

ADDRESS CODE LABEL | MNEMONICS COMMENTS
2000 21,02,21 | START: | LXIH,2102H | Jiiaiize memory pointer with
2003 46 MOV B, M Load multiplier in B register
2004 11, 00, 00 LXI D, 0000H Initialise the DE pair with 0000H
2007 2A, 00, 21 LHLD 2100H Load multiplicand in H-L pair
200A EB XCHG Exchange DE with HL pair
200B 19 BACK: | DAD D Add DE and HL contents
200C 05 DCR B Decrement register B
200D C2,08B, 20 JNZ BACK If not zero, go to BACK
2010 22,03, 21 SHLD 2103H | 5ore Ihe Productin HiL- pairto
2013 EF END: | RST 05 Return to monitor program

3. Write an ALP for binary division. The 8-bit divisor and dividend are stored at memory
locations 2100H and 2101H respectively. The remainder and quotient should be stored

at 2102H and 2103H respectively.

MEMORY | MACHINE
ADDRESS CODE LABEL | MNEMONICS COMMENTS
2000 21,00,21 | START: | LXIH, 21000 | 'Nitialize HL pair as memory
pointer
2003 46 MOV B, M Load divisor in B register
2004 23 INXH Increment HL pair
2005 7E MOV A, M Load dividend to accumulator

2006 23 INXH Increment HL pair

2007 0E, 00 MVI C, 00H Initialize quotient as 00H
2009 B8 CMP B Is dividend less than divisor?
200A DA, 13, 20 JC AHEAD If yes, jump to AHEAD
200D 90 BACK: |SUBB Subtract divisor from dividend
200E 0C INR C Increment C register

200F B8 CMP B Is dividend less than divisor
2010 D2, 0D, 20 JNC BACK If no carry, jump to BACK
2013 77 AHEAD: | MOV M, A Store remainder at 2102H
2014 23 INXH Increment HL pair

2015 71 MOV M, C Store quotient at 2103H
2016 EF END RST 05 Return to monitor program

BINARY TO BCD CONVERSION AND BCD TO BINARY CONVERSION

EXPERIMENT 5

1. Write an ALP to convert BCD to Binary

MEMORY | MACHINE
ADDRESS CODE LABEL | MNEMONICS COMMENTS
) Load accumulator with content
2000 3A,00,25 | START: | LDA 2500H of address 2500
2003 47 MOV B, A Move data from accumulator to
reg. B
2004 E6, FO ANI FOH AND FO0 with accumulator
content
Rotate accumulator content
2006 OF RRC right by 1 bit
Rotate accumulator content
2007 OF RRC right by 1 bit
Rotate accumulator content
2008 OF RRC right by 1 bit
Rotate accumulator content
2009 OF RRC right by 1 bit
200A 57 MOV D, A Move data from accumulator to
reg. D
200B OE, OA MVI C, 0AH Initialise C register with 0AH
200D 97 SUB A Subtract A from A (clearing
accumulator)
200E 82 BACK: | ADDD Add D with A
200F 0D DCR C Decrement C register
2010 C2, OE, 20 JNZ BACK Jump if not zero to BACK
2013 57 MOV D, A Move data from accumulator to
reg D
2014 73 MOV A, B Move data from reg B to
accumulator
2015 E6, OF ANI OFH AND OF with accumulator
content
2017 82 ADD D Add D with A

2018

32,01, 25

STA 2501H

Store accumulator content in
2501H

201B

EF

END:

RST 05

Return to monitor program

2. Write an ALP to convert Binary to BCD

Z/IlfglR(l)El;‘S{ MégI;IENE LABEL | MNEMONICS COMMENTS
2000 16,00 START: | MVI D, 00H Initialise D with 00H
2002 1E,00 MVIE, 00H Initialise E with 00H
2004 21, 00, 24 LXI H, 2400H 52881?* pair with address
2007 7 Moy M | Move data from memory to
2008 FE,64 | HUND: |CPIG4H Compare data in accumulator
200A DA 13,20 JC TEN Jump on carry to label TEN
200D 1C INRE Increment E register
200E D6, 64 SUI 64H Subtract 64H from accumulator
2010 C3, 08,20 JMP HUND Jump to label HUND
2013 FE,0A | TEN: |CPIOAH Compare data in accumulator
2015 DA, 1E, 20 JC UNIT Jump if carry to label UNIT
2018 14 INRD Increment D register
2019 D6, 0A SUI OAH Subtract 0AH from accumulator
201B C3,13,20 JMP TEN Jump to label TEN
201E 23 UNIT: |INXH Increment H-L pair
201F 73 MOV M.E Move data from reg. E to

memory

Move data from accumulator

2020 4F MOV C,A
to reg. C

2021 7A MOV A.D Move data from reg. D to
accumulator

2022 07 RLC Rotate' accumulator content left
by 1 bit

2023 07 RLC Rotate' accumulator content left
by 1 bit

2024 07 RLC Rotate' accumulator content left
by 1 bit

2025 07 RLC Rotate‘ accumulator content left
by 1 bit

2026 81 ADD C Add C with A

2027 23 INX H Increment H-L pair

2028 77 MOV M, A Move data from accumulator
to memory

2029 EF END: RST 05 Return to monitor program

EXPERIMENT 6

LOGICAL OPERATIONS

1. Write an ALP to find the larger of two numbers.

MEMORY | MACHINE
ADDRESS CODE LABEL | MNEMONICS COMMENTS
2000 21,01, 25 START: | LXIH, 2501H Address of 1% number in H-L pair.
2003 7E MOV A, M 1% number in accumulator.
nd H _
2004 23 INX H Ad_dress of 2" number in H-L
pair.
Compare 2" number with 1%
2005 BE CMPM number. Is the 2" number >1% ?
No, larger number is in
2006 D2, 04, 20 INC AHEAD accumulator. Go to AHEAD.
nd H
2009 7E MOV A, M Yes, get 2" number in
accumulator.
200A 32,08, 25 AHEAD: | STA 2503H Store larger number in 2503H.
200D EF END: RST 05 Return to monitor program

2. Write an ALP to find the smaller of two numbers.

MEMORY | MACHINE
ADDRESS CODE LABEL MNEMONICS COMMENTS
2000 21,01, 25 START: | LXIH, 2501H Address of 1%t number in H-L pair.
2003 7E MOV A, M 1% number in accumulator.
nd H -
2004 23 INX H Aeress of 2"% number in H-L
pair.
Compare 2" number with 1%
2005 BE CMF M number. Is the 2" number >15 ?
Yes, smaller number is in
2006 DA, 0A, 20 JC AHEAD accumulator. Go to AHEAD.

nd H
2009 7E MOV A, M No, get 2" number in
accumulator.
200A 32,04, 25 AHEAD: | STA 2504H Store smaller number in 2504H.
200D EF END: RST 05 Return to monitor program

3. Write an ALP to find the largest number in an array of 8-bit numbers.

MEMORY | MACHINE
ADDRESS CODE LABEL | MNEMONICS COMMENTS
2000 21, 00, 25 START: | LXIH, 2500H | Address for count in H-L pair.
2003 4E MOV C, M Count in register C.
2004 23 INXH Address of 1% number in H-L pair.
2005 7E MOV A, M 1% number in accumulator.
2006 0D DCR C Decrement count.
2007 23 LOOP: INX H Address of next number.
2008 BE CMP M Com_pare next no. with previous
maximum. Is next no. > previous?
No, larger number is in accumulator.
2009 D2, 0D, 20 JNC AHEAD Go to the label AHEAD.
200C 7E MOV A M Yes, get larger number in
accumulator.
200D oD AHEAD: |DCRC Decrement count.
200E C2,07, 20 JNZ LOOP Jump if not zero.
2011 32,50, 24 STA 2450H Store result in 2450H.
2014 EF END: RST 05 Return to monitor program

4. Write an ALP to find the smallest number in an array of 8-bit numbers.

MEMORY | MACHINE
ADDRESS CODE LABEL | MNEMONICS COMMENTS
2000 21,00,25 | START: | LXIH, 2500H | Address for countin H-L pair.
2003 4E MOV C, M Count in register C.
2004 23 INXH Address of 1% number in H-L pair.
2005 7E MOV A, M 1%t number in accumulator.
2006 0D DCRC Decrement count.
2007 23 LOOP: | INXH Address of next number.
2008 BE CMP M Com_pare next no. with previous
maximum. Is next no. > previous?
Yes, smaller number is in accumulator.
2009 DA, 0D, 20 JC AHEAD Go to the label AHEAD.
200C 7E MOV A M No, get smaller number in
accumulator.
200D oD AHEAD: | DCRC Decrement count.
200E C2,07, 20 JNZ LOOP Jump if not zero.
2011 32,51, 24 STA 2451H Store result in 2451H.
2014 EF END: RST 05 Return to monitor program

5. Write an ALP to sort an array of 8-bit numbers in the descending order.

MEMORY | MACHINE
ADDRESS CODES LABEL MNEMONICS COMMENTS
2000 21, 00, 26 START: | LXIH, 2600H Set pointer for array.

2003 4E MOV C, M Load the Count.

2004 0D DCR C Decrement Count.

2005 51 REPEAT: | MOV D, C _Count_ the number of Comparisons
In register D.

2006 2101, 26 LXI H, 2601H Load starting address of data
array.

2009 7E LOOP: | MOV A M Copy content of memory location
to Accumulator.

200A 23 INXH Increment content of HL pair

200B BE CMP M Compare the number with next
number.

200C | D2 14,20 INC SKIP Jump to skip if carry not
generated.

200F 46 MOV B, M Copy content of memory location
to B Register.

2010 77 MOV M, A Copy content _of Accumulator to
memory location.

2011 2B DCX H Decrement content of HL pair

2012 70 MOV M. B Copy content _of B Register to
memory location.

2013 23 INXH Increment content of HL pair

2014 15 SKIP: DCRD Decrement D register

2015 C2,09, 20 JNZ LOOP Jump to LOORP if not Zero.

2018 0D DCRC Decrement C register

2019 C2, 05, 20 JNZ REPEAT Jump to REPEAT if not Zero.

201C EF END: RST 05 Return to monitor program

6. Write an ALP to sort an array of 8-bit numbers in the ascending order.

MEMORY | MACHINE
ADDRESS CODES LABEL MNEMONICS COMMENTS

2000 21, 00, 26 START: | LXIH, 2600H Set pointer for array.

2003 4E MOV C, M Load the Count.

2004 0D DCRC Decrement Count.

2005 51 REPEAT: | MOV D, C _Count_ the number of Comparisons
in register D.

2006 2101, 26 LXI H. 2601H Load starting address of data
array.

2009 7E LOOP: | MOV A M Copy content of memory location
to Accumulator.

200A 23 INXH Increment content of HL pair

200B BE CMP M Compare the number with next
number.

200C DA, 14, 20 JC SKIP Jump to skip if carry generated.

200F 16 MOV B, M Copy content of memory location
to B Register.

2010 77 MOV M. A Copy content _of Accumulator to
memory location.

2011 2B DCX H Decrement content of HL pair

2012 70 MOV M. B Copy content _of B Register to
memory location.

2013 23 INX H Increment content of HL pair

2014 15 SKIP: DCR D Decrement D register

2015 C2,09, 20 JNZ LOOP Jump to LOORP if not Zero.

2018 oD DCRC Decrement C register

2019

C2, 05, 20

JNZ REPEAT

Jump to REPEAT if not Zero.

201C

EF

END:

RST 05

Return to monitor program

Aim

To generate a pulse train of frequency 200 Hz and duty cycle 50%.

Theory

Waveform generation using microprocessor requires input-output ports interfaced to it.
Programmable peripheral interface (PPI) 8255 is a general purpose programmable I/O
device designed to interface the CPU with its outside world such as ADC, DAC, keyboard
etc. IC 8255 provides 3 nos. of 8-bit ports (Port A, Port B and Port C). IC 8255 needs to
be initialized before use. Initialization includes setting mode of 8255 (Input-Output or
Bit Set Reset) and data direction in case of IO mode (Input or Output) for individual ports.
In this case, 8255 is setup in /O mode with all ports as output ports. So the initialization
control word 1s 80H.

The data send out from microprocessor to 8255 may be directed to Port A, B, C or Control

EXPERIMENT 7

DIGITAL 1/0 USING PPI- SQUARE WAVE GENERATION

Word Register (CWR). Each register mentioned above is given an 8-bit address.

I/0O address range

Port A = 00H; Port B=01H; Port C = 02H; Control word Register CWR = 03H

To initialize the 8255, load control word (80H) in Accumulator and send it to CWR

(03H)

PA; _J
PA; —
PA, —
PA —
D —
cs —
GND—
M —
A —
PC; —
PCg —
PCg —f
PCs —
PCo —
PCy —
PCz —|
PCy —
PBy —|
PBy —
PB; —

® NGO A W N

e R QT G Gt U T e SR " |
O ® ® N ;s W N - O

8255A

40
39
38
37
36
35

33
32
3
30
29
28
27
26
25
24

22
21

— oA
— PAg
— PA;
WR
— RESET
— Dg

L Dy

— D,

— D,

L D4

— Ds

— DG

— Dy

— Vee
— PBy
— PBs
— PBs
— PB4
— PBy

8255-1 CONNECTOR-CN4
PIN | SIGNALS | PIN | SIGNALS
1 P1C4 14 P1B1
2 P1C5 15 P1A6
3 P1C2 16 P1A7
4 P1C3 17 P1A4
5 P1C0 18 P1AS
6 P1C1 19 P1A2
7 P1B6 20 P1A3
8 P1B7 21 P1A0
9 P1B4 22 P1A1
10 P1BS 23 P1Cé6
11 P1B2 24 P1C7
12 P1B3 25 GND
13 P1B0 26 VCC

« PAO-PA7 - Pins of port A

« PBO0 - PB7 - Pins of port B

« PCO0-PC7 - Pins of port C

o DO - D7 — Data pins for the transfer of data
« RESET - Reset input

« RD’ - Read input

« WR’ - Write input

o CS8’ —Chip select

o Al and A0 — Address pins

Algorithm- Square Wave Waveform

Delay Calculation

The delay time required for frequency of 200 Hz is 2500us for low and high
states. Time delay subroutines load a value in a register or register-pair and
decrement it. When the value equals 0, it returns.

The statements from DCX D to JNZ REP is repeated N times (where N is
loaded in DE register-pair). LXI D, N and RET are executed only once.

Total T states in time delay = 24N +17
System frequency = 3.072 MHz

Thus, 1 T state = 0.3255us

Time delay, td = (24N + 17) x 0.3255us

For a delay of 2500 ps,
2500x10° = (24xN + 17) x 0.3255x10°
N=319,0=013FH

Algorithm:

Start

Set control word (Port A as output port)
Set port A low

Call delay

Set port A high

Call delay

Go to Step 3

Nk W=

Program

MEMORY | MACHINE
LABEL MNEMONICS COMMENTS
ADDRESS CODE

2000 3E, 80 MVI A, 80H Load A with immediate data
80H

2002 D3, 03 OUT 03H Send content of A to CWR

2004 3E, 00 LOOP: | MVI A, 00H ggﬁd A with immediate data
Send content of Acc to

2006 D3, 00 OUT 00H output port A

2008 CD, 15,20 CALL DELAY | Call the delay subroutine

008 3E, FF MVI A, FFH Load A with immediate data
FFH
Send content of Acc to

200D D3, 00 OUT 00H output port A

200F CD, 15,20 CALL DELAY | Call the delay subroutine

2012 C3, 04, 20 JMP LOOP Jump to LOOP to repeat

DELAY SUBROUTINE

2015 11,3F,01 | DELAY: LXID,013FH | -oad DE register pair with
value of N

2018 1B REP: DCX D Decrement D

2019 TA MOV A, D Move content of D to A
OR the value of E with A

201A B3 ORA E and store the result in A

201B C2,18, 20 JNZ REP Jump on non zero to REP

201E C9 RET Return to main program

Procedure

Enter the program for square wave generation from memory location 2000H
onwards. Execute the program and observe the waveform available at the pins of
port A. (Connect the probe to the corresponding Port A signal pins of CN4
connector)

Result

Aim

EXPERIMENT 8

INTERFACING D/A CONVERTER : GENERATION OF SIMPLE

WAVEFORMS-TRIANGULAR, RAMP

Triangular Waveform

To generate a triangular wave of suitable amplitude using DAC interface.

Algorithm

. To initialize 8255, load control word (80H) in Accumulator and sent it to

CWR (03H)
2. Clear Accumulator
3. Send Accumulator content to output port A (00H)
4. Increment Accumulator data
5. If Accumulator content not equal to FFH, go to Step 3
6. Out Accumulator content to Port A (O0H)
7. Decrement Accumulator
8. If Accumulator content not equal to 00H, go to Step 6
9. Go to Step 3
Program
MEMORYMACHINE| LABEL MNEMONICS COMMENTS
ADDRESS CODE
Load Acc with immediate
2000 3E, 80 MVI A, 80H data 80H
2002 D3, 03 OUT 03H Send content of Acc to CWR
2004 AF XRA A Clear the accumulator
2005 D3, 00 LOOP1: | OUT 00H Output the contents of Acc to
the output port A
2007 3C INR A Increment Acc
Compare the content of
2008 FE, FF CPTFFH Accumulator with maximum
200A 2, 05, 20 INZ LOOP1 Jump tq LOQPI if the result of
comparison is not equal to zero

200D D3, 00 LOOP2: | OUT 00H Output the value in acc at the
port A

200F 3D DCR A Decrement Acc

2010 C2, 0D, 20 INZ LOOP?2 Jump tq LOQP2 if result of
comparison is not equal to zero

2013 C3, 05, 20 JMP LOOP1 Jump to LOOP1 to repeat the
process

ii. Ramp (Sawtooth) Waveform

Aim

To generate a sawtooth waveform of suitable amplitude using DAC interface.

Algorithm:

1.To initialize 8255, load control word (80H) in Accumulator and sent it to CWR

(03H)
2.Clear Accumulator
3.0ut Accumulator content to Port A

4 Increment Accumulator

5.Go to Step 3

(Since Accumulator is an 8-bit register, incrementing from FFH results in 00H)

Program
MEMORYMACHINE
LABEL MNEMONI MMENT
ADDRESS CODE NEMONICS COMMENTS
2000 3E, 80 MVI A, $0H Load A with immediate data
&0H
2002 D3, 03 OUT 03H Send the contents of A to output
port
EXOR the value of A with A
2004 AF XRA A itself. This resets/clear
2005 D3, 00 LOQOP: OUT 00H Output the content of A to port
2007 3C INR A Increment A
2008 C3, 05, 20 JMP LOOP Jump to LOOP

Procedure

Enter the program from memory location 2000H onwards. Connect the CN4
pins of 8255 with the DAC module. Execute the program and observe the
output between X- Out and GND pins of the DAC.

Result

The following waveforms were generated using 8085.

Triangular waveform

Ramp waveform

Arduino UNO module

Arduino is an open-source physical computing platform based on a simple microcontroller
board, and a development environment for writing software for the board. The name “Arduino”
is a copyright held by the original team based in Italy that originally built the hardware, the
IDE (integrated development environment) and the software libraries. Arduino development
environment can be run on either Windows, Linux and MacOS for no cost other than for the
hardware. The software is freely downloadable in one bundle from www.arduino.cc, the
website that is ground-zero for all-things-Arduino.

Arduino can sense the environment by receiving input from a variety of sensors and can affect
its surroundings by controlling lights, motors, and other actuators.

Serial Out (TX)
Serial In (RX)

;‘ INITALY A
LR)
% N
T

I..v. = -x= ARDUINO . Reset Button

- m ,'- an T ») . .
'" g I)) ¢ @3 temed i o x In-ercmt
‘ | Pt os e CATHT | 109 1 Serial Programmer

USB Plug —

ATmega328
Microcontroller

External Power Supply

Analog In

3.3 Volt Power Pin Pins (0-5)

5 Volt Power Pin

Ground Pins

The Arduino board comes with a single LED, often called the Pin 13 LED because it is
electrically connected to Digital Pin 13. This LED is the board's only built-in indicator
accessible to programs.

http://www.arduino.cc/

EXPERIMENT 9

BLINKING INTERNAL LED OF ARDUINO UNO MODULE

>

im

To blink internal LED of Arduino UNO
Procedure

In the menu of the Arduino IDE you can choose:

File » Examples » 01. Basics » Blin

The IDE will open the code to blink the builtin LED automatically.

Uploading code to the Arduino

Now our program is ready to upload to the Arduino. First we have to connect our Arduino to
the computer with the USB cable. Make sure you've selected the correct board in the IDE:

Tools » Board » Arduino/Genuino UNO

and the correct port:

Tools » Port

If you are not sure which port to use, try them all until you can successfully upload your code.
Then verify your code for possible errors. The IDE only checks if it can read your code. It does
not check if you have written correct code for what you are trying to program.

If everything works, the IDE shows the Compiling completed message. You can now upload
your code by pressing the upload button. The uploading is complete when the messages
appears. Your program will immediately start after uploading. As a result you should now see
your Arduino LED blink with 1000ms intervals.

Program

void setup()
{
[initialize digital pin LED_BUILTIN as an output.
pinMode(LED_BUILTIN, OUTPUT);
}
/I the loop function runs over and over again forever
void loop()
{
digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)
delay(1000); // wait for a second
digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW

delay(1000); // wait for a second

Result

BLINKING EXTERNAL LED USING ARDUINO UNO MODULE

Aim
To blink an externally connected LED using Arduino UNO

Program

int LED = 8;
void setup()
{
/l initialize digital pin LED as an output.
pinMode(LED, OUTPUT);
}
/I the loop function runs over and over again forever
void loop()
{
digitalWrite(LED, HIGH); // turn the LED on (HIGH is the voltage level)
delay(1000); // wait for a second
digitalWrite(LED, LOW); // turn the LED off by making the voltage LOW
delay(1000); // wait for a second

Result

EXPERIMENT 10

ARDUINO BASED VOLTAGE MEASUREMENT

Aim
To measure a DC voltage in range 0-9 V using Arduino UNO

Theory

A voltage divider circuit consisting of two resistors in series will divide the input voltage to
bring it within the range of the Arduino analog inputs.

Arduino K

Ad

AN —

+*

e A e

GHND

Design

(Design the suitable values of R1 & R2, such that maximum voltage across R2 will be 5V,
when actual maximum input voltage is applied across series combination, in this case, 9V)

Program

int value = 0;
float voltage;
float R1 = 100.0;
float R2 = 330.0;

void setup()

{

pinMode(A0, INPUT);
Serial.begin(9600);
¥
void loop()
{
value = analogRead(A0);
voltage = value * (5.0/1024)*((R1 + R2)/R2);
Serial.print("Voltage =");
Serial.printin(voltage);
delay(500);

}

Circuit Diagram

-
M -
} b X

. - OO UNO)
o ARDUINO ®

Experiment 11

INTRODUCTION TO 8051 MICROCONTROLLER

Microcontroller is a programmable logic device that has computing and decision-making
capability similar to that of a CPU of a computer.

The Microcontroller communicates and operates in the binary numbers 0 and 1 called bits. Each
Microcontroller has a fixed set of instruction in the form of binary patterns called machine language.
However, it is difficult for human to communicate in the language of Os and 1s. Therefore, the binary
instructions given abbreviated names called mnemonics, which form the assembly language for given
microcontroller. An assembler is used to convert assembly language to machine language. For example,
if we have to add two numbers in A and B. we can use the instruction ADD A, B. This add instruction
is an example of mnemonics. Its machine language form will be 58, 65. This 58, 65 can be obtained
from microcontroller manual. 58 in hexadecimal represents the machine language instruction for ADD
and 65 represents A, B.

Each microcontroller recognizes and process a group of bits called the word and microcontrollers
are classified according to their word length. For example, a controller with an 8-bit word is known as
an 8-bit microcontroller and a controller with 32-bit word is known as a 32 bit microcontroller.
Organization of a Microcontroller Based system

CPU RAM ROM
1/0 Timer Serial Comport

Micro controller is a self-contained system or self-sufficient system having CPU, internal RAM,
internal ROM, Timers and counters, 1/0 ports, serial com port.

Micro controller is a specific purpose digital controller that is meant to read data, perform limited
calculations on that data and control its environment based on those calculations

APPLICATIONS
1. Measuring instruments such as the oscilloscope, multimeter and the spectrum analyzer

2. Music related equipment such as synthesizers

3. House hold items, such as the microwave oven, doorbell, washing machine and television.
4. Defence equipment such as fighter planes, missiles and radar.

5. Medical equipment such as blood pressure monitors, blood analyzers and monitoring system

ARCHITECTURE
The accumulator register ‘A’:- The most important data register is the A register which acts as the

accumulator. It is a mandatory that the A register carry one of the operands for all arithmetic instructions.
The other operand may be in memory (RAM) or in any other register.

Register B:- The register B is not a frequently used register, because it can be used as an operand only
for some specific operations like multiplication of two numbers, one operand should be in A, and the
other should be B. Same is the case for division. But it can store data.

Internal RAM:- Totally, the 8051 has 256 bytes of RAM, but half of it is reserved to act as the “special
function registers”, that is , the registers which are used to handle the activities of the peripherals of the
device. The remaining 128 bytes is what is referred to as internal RAM, and is divided into parts. The
first 32 bytes act as register banks 0 to 3; each bank contains 8 data registers named RO to R7. These
registers are used for data manipulations and data movement. At a time, only one of these banks is
operational. It is possible to switch from the current bank to another bank by using two bits of the PSW.
By default, it is bank 0 that is the current bank. RAM locations from 0 to 7 are set aside for bank 0
,where RO is RAM location 0, R1 is RAM locationl, R2 is location 2, and so on, until memory location

7, which belongs to R7 of bank 0. The second bank of registers RO- R7 starts at RAM location 08H and
goes to location of OF H. The third bank of RO-R7 starts at memory location 10H and goes to location
17H. Finally RAM locations 18H to IFH are set aside for the fourth bank of RO-R?7.
Bank 1 uses the same RAM as the stack. A total of 16 bytes from locations 20 H to 2 FH are set aside
for bit addressable read/write memory. A total of 80 bytes from locations 30 H to 7FH are used for read
and write storage or what is normally called a scratch pad. These 80 locations of RAM are widely used
for the purpose of storing data and parameters by 8051 programmers
Default register bank — Bank O
How to switch register banks? Register bank O is the default when the 8051 is powered up. We can
switch to other banks by use of the PSW (program status word) register. Bits D4 and D3 of the PSW are
used to select the desired register bank as shown in Table.

RS1 (PSW.4) RSO (PSW.3)

Bank 0 0 0
Bank 1 0 1
Bank 2 1 0
Bank 3 1 1

The D3 and D4 bits of register program status word(PSW) are often referred to as PSW.4 and
PSW.3 since they can be accessed by the bit addressable instructions SETB and CLR. For example,
“SETB PSB.3” will make PSW.3 = 1 and select bank register 1.

Stack in the 8051:- The stack is a section of RAM used by the CPU to store information temporarily.
This information could be data or address. The CPU needs this storage area since there are only a limited
number of registers.

How stacks are accessed in the 8051 :- The register used to access the stack is called the SP (stack
pointer) register. The stack pointer in the 8051 is only 8 bits wide, which means that RAM location 08
is the first location used the stack by the 8051. The storing of a CPU register in the stack is called a
PUSH, and pulling the contents off the stack back into a CPU register is called a pop. In other words, a
register is pushed onto the stack to save it and popped off the stack to retrieve it.

Pushing onto the stack: - In the 8051 the stack pointer (SP) points to the last location of the stack. As
we push data onto the stack, the stack pointer (SP) is incremented by one. For every byte of data saved
on the stack, SP is incremented only once.

Popping from the stack:- Popping the content of the stack back into a given register is the opposite
process of pushing .With every pop, the top byte of the stack is copied to the register specified by the
instructions and the stack pointer is decremented once.

The upper limit of the stack: Locations 08 to OF in the 8051 RAM can be used for the stack. This
is because locations 20- 2FH of RAM are reserved for bit addressable memory and must not be used by
the stack. If in a given program we need more area, we can change the SP to point to RAM locations
30-7FH. This is done with the instruction “MOV SP, #XX”.

CALL instruction and the stack: In addition using the stack to save registers, the CPU also used
the stack to save the address of the instruction just below the CALL instruction. This is how the CPU
knows where to resume when it returns from the called subroutine
PSW (program status word) register:- The PSW register is an 8-bit register. It is also referred to as
the flag register. Although the PSW register is 8 bits wide, only 6 bits of it are used by the 8051. The
two unused bits are user-definable flags. Four of the Flags are called conditional flags, meaning that
they indicate some conditions that result after am instruction being executed. These four are CY (carry
) AC (auxiliary carry) P (parity) and OV (over flow). The bits PSW.3 and PSW.4 are designated as RSO

and RSI, respectively and are used to change the bank registers. The PSW.5 and PSW.1 bits are general
— purpose status flag bits and can be used by the programmer for any purpose
lcy |Ac |F0 [RS1 |RS0O |ov |- P |

CY PSW.7 carry flag
AC PSW.6 Auxiliary carryflag
FO PSW.5 Available to the user for general purpose
RS1 PSW.4 Register Bank selector bit 1
RSO PSW. 3 Register Bank selector bit 0
OV PSW.1 user definable bit
P PSW.0 parity flag
RS1 RSO Register Bank

0 0 0
0 1 1
1 0 2
1 1 3

CY the carry Flag: - this flag is set whenever there is a carry out from the D7 bit. This flag bit is
affected after an 8-bit addition or subtraction. It can also be set to 1 or O directly by an instruction such
as “SETB C” and CLR C” where “SETB C” stands for “set bit carry” and “CLRC” for “clear carry”
Eg.:- MOV A, #9CH

ADD A, #64 H

Cy=1

AC, the auxiliary carry flag

If there is a carry from D3 to D4 during an ADD or SUB operation, this bit is set; otherwise, it is cleared.
This flag is used by instructions that perform BCD arithmetic

Eg. MOV A, #9CH

ADDA, # 64 H’

AC=1

P, the parity flag

The parity flag reflects the number of 1s in the accumulator register only. If the A register contains an
odd number of Is, then p=1. Therefor, p=0 if A has an even number of 1s

Eg. MOV A, #9CH

ADD A, #64H

P=0

OV the overflow flag

This flag is set whenever the result of a signed number operation is too large causing the high — order
bit to overflow into the sign bit. In general, the carry flag is used to detect errors in unsigned arithmetic
operations. The overflow flag is only used to detect errors in signed arithmetic operations.

ROM

ROM can be 4k on chip and 60k external ROM or 64k external

Addressing modes

The CPU can access data in various ways. The data could be in a register, or in memory, or be provided
as an immediate value. These various ways of accessing data are called addressing modes. The various
addressing modes of a microprocessor are determined when it is designed, and therefore cannot be
changed by the programmer. The 8051 provides a total of five distinct addressing modes. They are as
follows.

1. Immediate
Register
Direct
Register Indirect
Indexed

ok~ own

1.Immediate, addressing mode:- In this addressing mode, the source operand is a constant. In
immediate addressing mode, as the name implies, when the instruction is assembled, the operand comes
immediately after the opcode. The immediate data must be preceded by the pound sign, “#” This
addressing mode can be used to load information into any of the registers including the DPTR register.
Examples follows

MOV A, #25H :load 25H into A
MOV R4, #62 X load 62 into R4
MOV DPTR, #4521 X DPTR = 4521

2.Reqister addressing mode : Register addressing mode involves the use of registers to hold the data
to be manipulated.
Eg : MOVA, RO; copy the contents of RO into A.

The source and destination registers must match in size. In other words, coding “MOV DPTR,
A” will give an error, since the source is an 8 bit register and the destination C5 a 16 bit register.

We can move data between the accumulator and Rn (n =0 to 7) but movement of data between
Rn register is not allowed. For example, the instruction “MOV R4, R7” is invalid.

3.Direct addressing modes : There are 128 bytes of RAM in the 8051. The RAM has been assigned
addresses 00 to 7FH

1. RAM locations 00-1FH are assigned to the register banks and stack.

2. RAM locations 20-2FH are set aside as bit addressable space to save single bit data.

3. RAM locations 30-7FH is available as place to save byte sized data.

Although the entire 128 bytes of RAM can be accessed using direct addressing mode, it is most
often used to access RAM locations 30-7FH. This is due to the Fact that register bank locations are
accessed by the register names R0-R7, but there is no such name for other RAM locations. In the direct
addressing mode the data is in RAM memory locations whose address is known, and this address is
given as a part of the instruction. Contrast this with immediate addressing mode, in which the operand
itself is provided with the instruction. The “#” sign distinguishes between the two modes.

MOV RO, 40H; save content of RAM location 40H in RO RAM locations. These registers can
be accessed in two ways
MOV A, 4 ;s same as
MOV A, R4 ; which means copy R4 into A

4.Reqister indirect addressing mode
In the register indirect addressing mode, a register is used as pointer to the data. Register RO and

R1 are used for this purpose. In other words R2-R7 cannot be used to hold the address of an operand
located in RAM when using this addressing mode when RO and R1 are used as pointers, that is, when
they hold the addresses of RAM locations, they must be preceded by the “@” sign, as show below MOV
A, @RO; move contents of RAM location whose address is held by RO into A.

MOV @ R1, B ; move contents of B into RAM locations

whose address is held by R1.

Adv : - one of the advantages of register indirect addressing mode is that it makes accessing data
dynamic rather than static as in the case of direct addressing mode. Looping is not possible in direct
addressing mode. This is the main difference between the direct and register indirect addressing modes.

5.Indexed addressing modes is widely used in accessing data elements of look-up table entries located
in the program ROM space of the 8051. The instruction used for this purpose is “MOVC A, @
A+DPTR”. The 16-bit register DPTR and register A are used to form the address of the data element
stores in on-chip ROM. Because the data elements are stored in the program (code) space ROM of the
8051, the instruction MOVC is used instead of MOV. The “c” means code. In this instruction the
contents of A are added to the 16bit register DPTR to form the 16 bit address of the needed data.

PORTS
For input output operations, 8051 has 4 ports.

PORTO

Port 0 provides both address and data. The 8051 multiplexes address and data through port 0 to
save pins. When ALE=0, it provides data DO-D7, but when ALE = 1 it has address AO-A7. Therefore,
ALE is used for de multiplexing address and data with the help of a 74L.5373 latch..

PORT1 and PORT?2

In 8051 based systems with no external memory connection, both P1 and P2 are used as simple
Input —Output. However, in 8031/8051 based systems with external memory connections, port 2 must
be used along with PO to provide the 16-bit address for the external memory

PORT3

Occupies a total of 8 pins. It can be be used as input or output. Although port is configured as an input
port upon reset, this is not the way it is most commonly used. Ports has the additional function of
providing some extremely important signals such as interrupts.

P3 bit Function Pin
P3.0 RxD 10
P3.1 TxD 11
P3.2 INTO 12
P3.3 INTI 13
P3.4 TO 14
P3.5 T1 15
P3.6 WR 16
P3.7 RD 17

P3.1 are used for the RXD and TXD serial communications signals. Bits P3.2 and P3.3 are set aside

for external interrupts. Bits P3.4 and P3.5 are used for Timers 0 and 1. P3.6 and P3.7 are used to
provide the WR and RD signals of external memory connections.

Experiment 11.A
STUDY OF 8051 MICROCONTROLLER TRAINER KIT

AlM:

To familiarize 8051microcontroller kit and execute simple programs

HARDWARE SPECIFICATIONS OF THE 1 MICR NTROLILER:-
Make: KITEK

i. Processor, Clock Frequency
Intel 8051/89C51 at 12MHz (89C51 max upto 33MHz).

ii. Memory

System EPROM : 0000 - 3FFFH & C000 - FFFFH
System RAM : 4000 - BFFFH

Additional RAM : 0000 - 3FFFH & CO000 - FEFFH
Monitor Buffer : 4000 - 40FFH

User Program / Data RAM area : 4100 - BFFFH

User Data RAM area : 0000 - 3FFFH & C000 - FEFFH
Memory mapped 1/O : FFOO - FF1FH, FFCO - FFFFH
Memory mapped I/O expansion : FF20 - FFBFH

Note: The RAM area is from 4000 - 40FF should not be accessed by the user since it is used by
the monitor program

iii. Input / Output

Parallel : 24 1/0 lines using two numbers of 8255.

Serial : 1 Number of RS232 Serial Interface using 8051

Serial Port.
Timer : 8051 has two 16 bit Timer namely Timer 0 and
Timer 1

89C51 has 3 16 bit Timer / Counter.

Printer : One Centronics Compatible Printer interface
through 8255-1 port.

Interrupt : 8051 provides 5 interrupt sources. Among them two

are external interrupts called INTO and INT1.

iv. Display (Optional)

6 Digit, 0.3", 7-segment Red LED display with filter.
4 Digits for address display.

2 Digits for data display

Based on 8279 - keyboard and display controller.

v. LCD Interface

16 x 2 alpha numeric LCD display Module
vi. IBM PC Keyboard Interface

vii. Keyboard

101 ASCII keyboard

viii. Onboard Battery Backup (Optional)
Onboard Battery backup facility is provided for 64kb RAM 4000 - BFFF.

ix. System Power Consumption

+5V:3Amp

+12V : 200mA
-12V : 100mA
+30V : 300mA

PARALLEL INTERFACE DETAILS

Intel 8255(Programmable Peripheral Interface) is used for parallel interface. 1/0 system

mapping is used. Memory mapped 1/0O addresses are given below

Activerangeportaddress Portnumbers Selecteddevice
8255 — |
PORT PROGRAMMABLE
FFOC APORT
(FFOC-FFOF) FEOD BPORT PERIPHERAL
FFOE C PORT INTERFACE
FFOF CONTROL
WORD

PROCEDURE

Procedure for entering the program is given below.
1. For writing program select line assembler by simply pressing the key ‘A’ and

Enter key. After the command the LCD screen will prompt you to enter the “Start

Address”

2. Enter the starting address and press the enter key.
3. Now enter the instruction in assembly language one by one. After each instruction press

enter key.

4. To examine or imply modify data in a memory location, type “SD” followed by the memory
location, and press enter.

5. Toun assemble, use “U” in the home menu and press enter

6. To execute press, type ‘GO’ followed by the starting address location of the program and press enter

key

Further Commands available are:

1. Substitute Memory Command
Syntax:
#SD <Addr><CR> - for Data Memory

2. Register View / Modify
#R <CR>

3. GO Command
GO <Addr><CR>

4. Internal Ram Access command
#IR <Addr><CR>
To view that bytes in the internal RAM location (00 - 7F).

5. Assemble
#A <CR>

6. Unassemble
#U <CR>

EXPERIMENT 12

DATA TRANSFER: BLOCK DATA MOVEMENT, EXCHANGING DATA

1. Write an ALP to move a block of data from one location to another.

MEMORY| MACHINE
ADDRESS CODE LABEL MNEMONICS COMMENTS
4100 78, 0A MOV RO, #0AH Setting count
4102 75, 82, 00 MOV DPL, #00H Setting DPL = O0H
4105 75, 83, 45 LOOP: MOV DPH, #45H Setting DPH = 45H
Moving data from external
4108 = MOVX A, @DPTR memory to accumulator
4109 75, 83, 50 MOV DPH, #50H | Setting DPH = 50H
410C Fo MOVX @DPTR, A Moving data from accumulator
to external memory
410D A3 INC DPTR Increment data pointer
Decrement RO, goto label LOOP
410E D8, F5 DINZ RO, LOGP till value of RO becomes 0
4110 80, FE HLT: SIMP HLT Stop

2. Write an ALP to exchange a block of data between two locations.

MEMORY| MACHINE
ADDRESS CODE LABEL MNEMONICS COMMENTS
4100 78, 0A MOV RO, #0AH Setting count

4102 75, 82, 00 MOV DPL, #00H | Setting DPL = 00H

4105 75, 83, 45 LOOP: MOV DPH, #45H | Setting DPH = 45H
Moving data from external

4108 EO MOVX A, @DPTR memory to accumulator

4109 F9 MOV R1, A Move acc content to R1

410A 75, 83, 50 MOV DPH, #50H | Setting DPH = 50H
Moving data from external

410D EO MOVX A, @DPTR memory to accumulator

410E C9 XCHA, R1 Exchange A and R1 contents
Moving data from

410F FO MOVX @DPTR, A | 4ccumulator to external

4110 75, 83, 45 MOV DPH, #45H | Setting DPH = 45H

4113 E9 MOV A, R1 Move content of R1 to acc
Moving data from

4114 FO MOVX @DPTR, A | 4ccumulator to external

4115 A3 INC DPTR Increment data pointer
Decrement RO, goto label

4116 D8, ED DJNZ RO, LOOP LOOP till RO becomes 0

4118 80, FE HLT: SIMP HLT Stop

EXPERIMENT 13

ARITHMETIC OPERATIONS : ADDITION, SUBTRACTION,
MULTIPLICATION AND DIVISION

1. Write an ALP to add two 8 bit numbers, sum 16 bits.

MEMORY| MACHINE
ADDRESS CODE LABEL MNEMONICS COMMENTS

Setting Data pointer to the

4100 90, 42, 00 MOV DPTR, #4200H operand location

4103 7800 MOV RO, #00H EO reserved for higher order

yte

Copying first data from external

4105 EO MOVX A, @DPTR memory

4106 F9 MOV R1, A Copying the data to R1

4107 A3 INC DPTR Incrementing data pointer

4108 EO MOVX A, @DPTR Copying next data from external
memory

4109 29 ADD A, R1 Performing addition

410A 50, 01 JNC SKIP Checking if there is carry after add

410C 08 INC RO If carry exist, increment RO, else
skip

410D A3 SKIP: | INC DPTR Incrementing data pointer

410E 0 MOVX @DPTR, A Moving the lower order byte of
result to external memory

410F E8 MOV A, RO Copying higher order byte to
accumulator

4110 A3 INC DPTR Incrementing data pointer
111 Fo MOVX @DPTR, A Moving the lower order byte of

result to external memory
4112 80, FE HLT: | SIMP HLT Stop

2. Write an ALP to subtract one 8 bit number from another.

MEMORY

MACHINE

ADDRESS CODE LABEL MNEMONICS COMMENTS
4100 90,42, 00 MOV DPTR, #4200H g’gtet:;‘g | Data pointertothe
4103 78. 00 MOV RO, #00H lI)?}(/)t(;eserved for higher order
4105 = MOVX A, @DPTR %2%?3 first data from external
4106 F9 MOV R1, A Copying the data to R1
4107 A3 INC DPTR Incrementing data pointer
4108 EO MOVX A, @DPTR %;Fr)r)]/(;rr]g next data from external
4109 C3 CLRC Clearing carry
410A 99 SUBB A, R1 Performing subtraction
410B 50, 04 JNC SKIP Checking if there is borrow
410D 08 INC RO If borrow exists, incrementing RO
410E F4 CPLA Complement A
410F 24.01 ADD A, #01H If borrow exist, finding the 2’s

complement of result

4111 A3 SKIP: | INC DPTR Incrementing data pointer

4112 Fo MOVX @DPTR, A _Copymg magnitude part of result
into external memory

4113 E8 MOV A. RO Moving the sign flag into
accumulator

4114 A3 INC DPTR Incrementing data pointer

4115 o MOVX @DPTR, A Moving sign flag into external
memory

4116 80, FE HLT: | SIMP HLT Stop

3. Write an ALP to multiply two 8 bit numbers, result being a 16 bit number.

MEMORY | MACHINE
ADDRESS CODE LABEL MNEMONICS COMMENTS
4100 90,45,00 MOV DPTR,#4500H | -02ding data pointer with
location of first operand
4103 0 MOVX A, @DPTR Copying data from external
memory
4104 F5. FO MOV B, A Copylng first operand to B
register
4106 A3 INC DPTR Incrementing dat_a pointer to
access next location
4107 E0 MOVX A, @DPTR Copying second operand
from external memory
4108 A4 MUL AB Multiplication carried out
4109 A3 INC DPTR Incrementing data pointer to
store output
410A Fo MOVX @DPTR, A Storing lower order byte of
result to external memory
410B A3 INC DPTR Incrementing data pointer

Copying higher order data

410¢ ES, FO MOV A, B of result from B register
A10E o MOVX @DPTR, A Storing higher order byte of

result to external memory
410F 80, FE HLT: SIJMP HLT Stop

4. Write an ALP to perform 8 bit division operation.

MEMORY | MACHINE
ADDRESS CODE LABEL MNEMONICS COMMENTS

Loading data pointer with

4100 90,45,00 MOV DPTR, #4500H location of divisor

4103 EO MOVX A, @DPTR | C0PYing divisor from
external memory

4104 F5. FO MOV B, A Copylng first operand to B
register

4106 A3 INC DPTR Incrementing data pointer
to access next location

4107 0 MOVX A, @DPTR Copying dividend from
external memory

4108 84 DIV AB Division carried out

4109 A3 INC DPTR Incrementing data pointer
to store output

410A Fo MOVX @DPTR, A Storing quotient part of
result to external memory

410B A3 INC DPTR Incrementing data pointer

410C E5, FO MOV A B Copying rema!nder part of
result to B register
Storing higher order byte

410E FO MOVX @DPTR, A | of result to external

410F 80, FE HLT: SIMP HLT Stop

5. Write an ALP for decimal addition of two 8 bit numbers, sum being a 16 bit

number.
MEMORY | MACHINE
ADDRESS CODE LABEL MNEMONICS COMMENTS

4100 | 90,42, 00 MOV DPTR, #4200H | S€tting Data pointer to the
operand location
RO reserved for higher

4103 78, 00 MOV RO, #00H order byte

4105 E0 MOVX A, @DPTR Copying first data from
external memory

4106 F9 MOV R1, A Copying the data to R1

4107 A3 INC DPTR Incrementing data pointer

4108 E0 MOVX A, @DPTR Copying next data from
external memory

4109 29 ADD A, R1 Performing addition

410A D4 DA A Decimal adjust

410B 50, 01 INC SKIP Checking if there is carry
after add

410D 08 INC RO If carry exist, increment RO,
else skip

410E A3 SKIP: INC DPTR Incrementing data pointer
Moving the lower order

410F FO MOVX @DPTR, A | pyte of result to external

4110 E8 MOV A, RO Copying higher order byte
to accumulator

4111 A3 INC DPTR Incrementing data pointer
Moving the higher order

4112 FO MOVX @DPTR, A | hyte of result to external

4113 80, FE HLT: SIMP HLT Stop

6. Write an ALP to add a series of 8 bit numbers, sum 16 bits.

MEMORY | MACHINE
ADDRESS CODE LABEL MNEMONICS COMMENTS

4100 90.45,00 MOV DPTR, #4500H | Setting data pointer to the
operand location

4103 7A,00 MOV R2, #00H Initialise R2

4105 78,0A MOV RO, #0AH Initialise count

4107 Eo MOVX A, @DPTR Copying operand into the
accumulator

4108 18 DEC RO Decrement RO

4109 F9 BACK: MOV R1, A Move A content to R1

410A A3 INC DPTR Increment DPTR

410B 0 MOVX A, @DPTR Copying operand into the
accumulator

410C 29 ADD A, R1 Add A and R1 contents

410D 50,01 JNC SKIP Jump on no carry to skip

410F 0A INC R2 Increment R2

) Decrement RO, goto label

4110 D8, F7 SKIP: DJNZ RO, BACK LOOP till value becomes 0

4112 90,50,00 MOV DPTR, #5000H | S€tting data pointer to the
result location

4115 Fo MOVX @DPTR, A Copying result to external
memory

4116 A3 INC DPTR Increment DPTR

4117 EA MOV A, R2 Move R2 to A
4118 FO MOVX @DPTR, A | Store the final carry
4119 80, FE HLT: SIMP HLT Stop

7. Write an ALP to find square of an 8 bit number, result being a 16 bit number.

MEMORY| MACHINE
ADDRESS CODE LABEL MNEMONICS COMMENTS
Setting data pointer to the
4100 90, 42, 00 MOV DPTR, #4200H operand location
Copying operand into the
4103 EO MOVX A, @DPTR accumulator
Copying content of accumulator to
4104 F5, FO MOV B, A B register
4106 A4 MUL AB Performing multiplication
4107 A3 INC DPTR Incrementing data pointer
4108 Fo MOVX @DPTR, A Copying lower order byte of result
to external memory
4109 E5. FO MOV A B Copying higher order byte of
result to accumulator
410B A3 INC DPTR Incrementing data pointer
410C Fo MOVX @DPTR, A Copying higher order byte of
result to external memory
410D 80, FE HLT: | SIMP HLT Stop

EXPERIMENT 14

IMPLEMENTATION OF BOOLEAN AND LOGICAL INSTRUCTIONS

1. Write an ALP to find the larger of two numbers.

MEMORY | MACHINE
ADDRESS | CODE LABEL MNEMONICS COMMENTS
4100 90,45,00 MOV DPTR #4500H | S€tting initial value of Data
pointer
4103 EO MOVX A @DPTR Obtaining first number from
external memory
4104 F5,FO0 MOV B,A First number moved to B reg
4106 A3 INC DPTR Incrementing data pointer
4107 EO MOVX A @DPTR Obtaining second number from
external memory
4108 | B5,F0,02 CINE A,B,LOOP1 Cg(;ﬂg";‘re and jump if not
410B 80,06 SIMP LOOP2 If equal, jump to LOOP2
410D 40,02 LOOP1: | JCLOOP3 If carry, jJump to LOOP3
410F F5,F0 MOV B,A Larger number in B
4111 E5,FO LOOP3: | MOV AB Move the result to ACC
4113 A3 LOOP2: | INCDPTR Incrementing data pointer
4114 Fo MOVX @DPTR.A Result moved to external
memory
4115 80,FE HLT: SIMP HLT Stop

2. Write an ALP to find the smaller of two numbers.

MEMORY

MACHINE

ADDRESS | CODE LABEL MNEMONICS COMMENTS
4100 90,45,00 MOV DPTR#4500H | S€tting initial value of Data
pointer
4103 EO MOVX A @DPTR Obtaining first number from
external memory
4104 F5,F0 MOV B,A First number moved to B reg
4106 A3 INC DPTR Incrementing data pointer
4107 EO MOVX A @DPTR Obtaining second number from
external memory
4108 | B5F0,02 CINE A,B,LOOP1 Cg&g?re and jump if not
410B 80,06 SIMP LOOP2 If equal, jump to LOOP2
410D 50,02 LOOP1: | JNC LOOP3 If no carry, jump to LOOP3
410F F5,F0 MOV B,A Larger number in B
4111 E5,FO LOOP3: | MOV AB Move the result to ACC
4113 A3 LOOP2: | INCDPTR Incrementing data pointer
4114 Fo MOVX @DPTR.A Result moved to external
memory
4115 80,FE HLT: SIMP HLT Stop

3. Write an ALP to find the largest number in an array.

MEMORY

MACHINE

ADDRESS | CODE LABEL | MNEMONICS COMMENTS
4100 90,45,00 MOV DPTR,#4500H | Setting initial value of Data
pointer
4103 EO MOVX A @DPTR Obtaining count from
external memory
4104 FD MOV R5, A S‘[Fc{)ging the count in register
4105 75 F0,00 MOV B, #00H Largest number to be stored in
B register
4108 A3 LOOP2: | INC DPTR Incrementing data pointer
4109 EO MOVX A @DPTR Moves data into accumulator
from external memory
410A | B5F0,02 CINE A,B,LOOP1 Cg(;‘lﬁf‘re and jump if not
410D 80,04 SJMP LOOP3 If equal, jump to LOOP3
410F 40, 02 LOOP1: | JC LOOP3 If carry from comparison, no
need to update B
4111 F5,FO MOV B,A Update B
4113 DD.F3 LOOP3: | DINZ R5.LOOP2 Decrement and Jump if not
equal to Zero
4115 | 90,46,00 MOV DPTR,#4600H | Sctting data pointer with
address to store result
4118 E5.F0 MOV A B Largest number available in
accumulator
A11A FO MOVX @DPTR A Storing the largest number to
external memory
411B 80,FE HLT: SIMP HLT Stop

4. Write an ALP to find the smallest number in an array.

MEMORY | MACHINE
ADDRESS | CODE LABEL MNEMONICS COMMENTS
4100 90,45,00 MOV DPTR #4500H | S€tting initial value of Data
pointer
4103 EO MOVX A @DPTR Obtaining count from
external memory
4104 ED MOV RS, A S‘[Fc{)ging the count in register
4105 75.F0 FF MOV B #0FFH Smallest pumber to be stored
in B register
4108 A3 LOOP2: | INCDPTR Incrementing data pointer
4109 EO MOVX A @DPTR Moves data into accumulator
from external memory
410A | BS5,F0,02 CINE A,B,LOOPL Cg(;‘;g?re and jump if not
410D 80,04 SJMP LOOP3 If equal, jump to LOOP3
410F 50,02 | LOOP1: | IJNC LOOP3 I no carry from comparison,
no need to update B
4111 F5,F0 MOV B,A Update B
4113 DD,F3 | LOOP3: | DINZR5LOOP2 |Decrementand Jump if not
equal to Zero
4115 | 90,46,00 MOV DPTR #4600H | S€tting data pointer with
address to store result
4118 E5.FO MOV A.B Smallest number available in
accumulator
A11A 0 MOVX @DPTR.A Storing the largest number to
external memory
411B 80,FE HLT: SIMP HLT Stop

5. Write an ALP to sort a given array in ascending order.

MEMORY | MACHINE

ADDRESS | CODE LABEL MNEMONICS COMMENTS
4100 78,05 MOV RO,#05H Setting count in RO
4102 18 DEC RO Decreasing count by one,

max value of loop variable
4103 E8 LOOP3: | MOV ARO Copying loop variable to
accumulator
4104 F9 MOV R1,A Copying loop variable to R1
4105 90,45,00 MOV DPTR,#4500H Sett!ng initial value of Data
pointer

4108 C0,83 LOOP2: | PUSH DPH Saving DPH in stack
410A C0,82 PUSH DPL Saving DPL in stack
410C EO MOVX A,@DPTR One number to acc
410D F5,F0 MOV B,A Number moved to B reg
410F A3 INC DPTR Incrementing data pointer
4110 EO MOVX A,@DPTR |Second no. to accumulator
4111 | B5F0,02 CINE A,B,LOOP1 Cg(;zgfre and jump if not
4114 80,0B SJMP LOOP Jump if equal to LOOP
4116 50,09 LOOP1: | JNC LOOP Jump on no carry to LOOP
4118 D0,82 POP DPL Stack contents to DPL
411A D0,83 POP DPH Stack contents to DPH

Acc content to external

411C FO MOVX @DPTR,A
memory

411D A3 INC DPTR Updating data pointer

411E E5,FO MOV AB Copying B content to acc

4120 Fo MOVX @DPTR.A Acc content to external
memory

4121 DOE5 | LOOP: | DINZRLLOopz |Decrementand ump if not
Zero (for comparison)

4123 D8.DE DINZ RO,LOOP3 Decrement and Jump if not
Zero (for pass)

4125 80,FE HLT: SIMP HLT Stop

6. Write an ALP to sort a given array in descending order.

MEMORY

MACHINE

ADDRESS | CODE LABEL MNEMONICS COMMENTS
4100 78,05 MOV RO,#05H Setting count in RO
4102 18 DEC RO Decreasing count by one,
max value of loop variable

4103 E8 LOOP3: | MOV ARO Copying loop variable to
accumulator

4104 F9 MOV R1,A Copying loop variable to R1

4105 90,45,00 MOV DPTR #4500+ | Setting initial value of Data
pointer

4108 C0,83 LOOP2: | PUSH DPH Saving DPH in stack

410A C0,82 PUSH DPL Saving DPL in stack

410C EO MOVX A,@DPTR One number to acc

410D F5,F0 MOV B,A Number moved to B reg
410F A3 INC DPTR Incrementing data pointer
4110 EO MOVX A/ @DPTR | Second no. to accumulator
4111 | B5F0,02 CINE A,B,LOOP1 Cg(;ﬂgfre and jump if not
4114 80,0B SJMP LOOP Jump if equal to LOOP
4116 40,09 LOOP1: | JCLOOP Jump on no carry to LOOP
4118 D0,82 POP DPL Stack contents to DPL
411A DO0,83 POP DPH Stack contents to DPH
411C 0 MOVX @DPTR.A Acc content to external
memory
411D A3 INC DPTR Updating data pointer
411E E5,FO MOV A,B Copying B content to acc
4120 0 MOVX @DPTR.A Acc content to external
memory
4121 DOE5 | LOOP: | DINZRLLoopz |Decrementand ump if not
Zero (for comparison)
4123 D8.DE DINZ RO,LOOP3 Decrement and Jump if not
Zero (for pass)
4125 80,FE HLT: SIMP HLT Stop

EXPERIMENT 15

COUNTERS: HEXADECIMAL AND BCD COUNTERS

1. Write an ALP for implementing an 8-bit hexadecimal up-counter with a time

delay of 1 second between consecutive numbers.

MEMORY

MACHINE

ADDRESS CODE LABEL MNEMONICS COMMENTS

Setting internal ram location

4100 75, 50, 00 MOV 50H,#00H 50H with zero

4103 E5 50 | LOOP: MOV A50H Copying content of internal ram

’ ' ’ location 50H

4105 F590 MOV PLA Copy content of Accumulator to
port P1

4107 04 INC A Increment content of accumulator

4108 F5,50 MOV 50H,A Update content of location 50H

410A 31, OE ACALL DELAY Call delay sub routine

410C 80, F5 SJMP LOOP Jump to label “Loop”

410E 79 03 DELAY: MOV RL#03H Start of delay subroutine, setting
content of R1 to 03

4110 90,38,00 L1: | MOV DPTR#3800H | Using data pointer as a up counter

4113 A3 L2: INC DPTR Increment data pointer

4114 E5, 83 MOV A,DPH Moving DPH to accumulator

4116 45, 82 ORL A,DPL OR content of DPH and DPL

4118 70 F9 INZ L2 If resglt of OR operation is non
zero, jump to label L2

A11A D9, F4 DINZ RLL1 Decrement R1 and jump if not

zeroto L1

411C 22

RET End of delay subroutine
Time delay calculation
Label | Mnemonics macﬁi%?gsglg: per Numbgr of TOtf"I no of
execution executions machine cycles
MOV R1,#03H 1 1 1
L1: MOV DPTR#X D 2 3 6
L2: | INCDPTR 2 3x (65535-X) 6X (65535-X)
MOV A,DPH 1 3x (65535-X) 3x (65535-X)
ORL A,DPL 1 3x (65535-X) 3x (65535-X)
INZ L2 2 3x (65535-X) 6X (65535-X)
DIJNZ R1,L1 2 3 6
RET 2 1 2
Total number of machine cycles 1179645-18X

Total number of machine cycles = 1179645 — 18X
One machine cycle consists of 12 clock cycles.
Clock Frequency applied to 8051 = 11.0592 MHz

Time delay to be generated = 1179645718% o 12=1 second

o 11.0592 x 106
1179645 — 18X = 2"

=921600
X = =000 — 14335.83 = 14336 D = 3800 H

2.Write an ALP for implementing an 8-bit hexadecimal down-counter with a time
delay of 1 second between consecutive numbers.

MEMORY, MACHINE
ADDRESS CODE LABEL MNEMONICS COMMENTS
Setting internal ram location
4100 75, 50, FF MOV 50H,#0FFH 50H with EEH
: Copying content of internal ram
4103 E5,50 | LOOP: | MOV A,50H location 50H

4105 F5.90 MOV PLA Copy content of Accumulator to
port P1
4107 14 DEC A Decrement content of accumulator
4108 F5,50 MOV 50H,A Update content of location 50H
410A 31, OE ACALL DELAY Call delay sub routine
410C 80, F5 SJMP LOOP Jump to label “Loop”
A10E 7903 DELAY: MOV RL#03H Start of delay subroutine, setting
content of R1 to 03
4110 90,38,00 L1: | MOV DPTR#3800H | Using data pointer as a up counter
4113 A3 L2: | INCDPTR Increment data pointer
4114 E5, 83 MOV A,DPH Moving DPH to accumulator
4116 45, 82 ORL A,DPL OR content of DPH and DPL
4118 70, F9 INZ L2 If resglt of OR operation is non
zero, jump to label L2
A11A D9, F4 DINZ RLL1 Decrement R1 and jump if not
zeroto L1
411C 22 RET End of delay subroutine
Time delay calculation
. N_umber of Number of Total no of
Label | Mnemonics machine cycles per i .
. executions machine cycles
execution
MOV R1,#03H 1 1 1
L1: MOV DPTR#X D 2 3 6
L2: INC DPTR 2 3x (65535-X) 6x (65535-X)

MOV A,DPH 1 3x (65535-X) 3x (65535-X)
ORL A,DPL 1 3x (65535-X) 3x (65535-X)
INZ L2 2 3x (65535-X) 6x (65535-X)
DINZR1,L1 2 3 6
RET 2 1 2

Total number of machine cycles 1179645-18X

Total number of machine cycles = 1179645 — 18X
One machine cycle consists of 12 clock cycles.
Clock Frequency applied to 8051 = 11.0592 MHz

Time delay to be generated = 11796457 18X 12=1 second

11.0592 x 10°
1179645 18X = L0 g 6o

=921600
X = 1179645921600 _ 4433583 =~ 14336 D = 3800 H

18

3. Write an ALP for implementing an 8-bit BCD up-counter with a time delay of
1 second between consecutive numbers.

'\Aﬂggﬂé'g M’ég';'ENE LABEL, MNEMONICS COMMENTS
4100 75, 50, 00 MOV 50H.#00H gggir\:\gljiti;\tzegrgl ram location
4103 E5 50 | LOOP: | MOV A 50H IC(:JZ%ionr? 5c(<)3|:tent of internal ram
4105 F5.90 MOV P1A g(;)r[z)lla iorr;geir;teorf Accumulator to
4107 24,01 ADD A #01H Increment content of accumulator
4109 D4 DA A Decimal adjust accumulator
410A F5,50 MOV 50H,A Update content of location 50H
410C 31,10 ACALL DELAY Call delay sub routine
410E 80, F3 SJMP LOOP Jump to label “Loop”

4110 7903 |DELAY: MOV RL#03H Start of delay subroutine, setting
content of R1 to 03
4112 90,38,00 L1: | MOV DPTR#3800H | Using data pointer as a up counter
4115 A3 L2: | INCDPTR Increment data pointer
4116 E5, 83 MOV A,DPH Moving DPH to accumulator
4118 45, 82 ORL A,DPL OR content of DPH and DPL
A11A 70, F9 INZ L2 If resglt of OR operation is non
zero, jump to label L2
4110 DY, F4 DINZ RLL1 Decrement R1 and jump if not
zeroto L1
411E 22 RET End of delay subroutine
Time delay calculation
. N_umber of Number of Total no of
Label | Mnemonics machine cycles per X .
. executions machine cycles
execution
MOV R1,#03H 1 1 1
L1: MOV DPTR#X D 2 3 6
L2: INC DPTR 2 3x (65535-X) 6x (65535-X)
MOV A,DPH 1 3x (65535-X) 3x (65535-X)
ORL A,DPL 1 3x (65535-X) 3x (65535-X)
JNZ L2 2 3x (65535-X) 6x (65535-X)
DIJNZ R1,L1 2 3 6
RET 2 1 2

Total number of machine cycles

1179645-18X

Total number of machine cycles = 1179645 — 18X
One machine cycle consists of 12 clock cycles.
Clock Frequency applied to 8051 = 11.0592 MHz

Time delay to be generated =

1179645-18X
11.0592 x 106

x 12=1 second

1179645 - 18X =

1179645-921600

X =
18

11.0592 x10°

=921600

= 14335.83 = 14336 D = 3800 H

4. Write an ALP for implementing an 8-bit BCD down-counter with a time delay
of 1 second between consecutive numbers.

/I\A\Ag['\)ﬂl:{oEF;; Mé%HDIENE LABEL MNEMONICS COMMENTS
4100 | 7550,99 MOV 50H#00H oornd infermal ram location
4103 E5,50 | DOWN: | MOV A50H f;?ﬁi’éﬂ%ﬁf&:ﬁ internal
4105 F5. 90 MOV P1A ;oggrfgqtfgéizzef\ccumuIator
4107 24,99 ADD A #99H Adding 99H to accumulator
4109 D4 DA A Decimal adjust accumulator
410A F5, 50 MOV 50H,A Update content of location 50H
410C 31,10 ACALL DELAY Call delay sub routine
410E 80, F3 SJMP DOWN Jump to label “Loop”
a0 7o DELAY. wovRimm Swofime s
4112 | 90,3800 | L1 | MOV DPTR#3800H goslm?efata pointer as a up
4115 A3 L2: INC DPTR Increment data pointer
4116 E5, 83 MOV A,DPH Moving DPH to accumulator
4118 45, 82 ORL A,DPL OR content of DPH and DPL

A11A 70. F9 INZ L2 If resm_JIt of OR operation is non
zero, jump to label L2
411C D9, F4 DINZ RLL1 Decrement R1 and jump if not
zeroto L1
411E 22 RET End of delay subroutine
Time delay calculation
. N_umber of Number of Total no of
Label | Mnemonics machine cycles per . .
. executions machine cycles
execution
MOV R1,#03H 1 1 1
L1: MOV DPTR#X D 2 3 6
L2: INC DPTR 2 3x (65535-X) 6x (65535-X)
MOV A,DPH 1 3x (65535-X) 3x (65535-X)
ORL A,DPL 1 3x (65535-X) 3x (65535-X)
JNZ L2 2 3x (65535-X) 6x (65535-X)
DIJNZ R1,L1 2 3 6
RET 2 1 2
Total number of machine cycles 1179645-18X

Total number of machine cycles = 1179645 — 18X
One machine cycle consists of 12 clock cycles.
Clock Frequency applied to 8051 = 11.0592 MHz

Time delay to be generated = = —or>_15X
11.0592 X 10
1179645 — 18X =

=921600
y = 1179645-921600
18

11.0592 x10°

x 12=1 second

= 14335.83 = 14336 D = 3800 H

