

Department of Electrical Engineering

 College of Engineering Trivandrum

Lab Manual

Microprocessors and Microcontrollers Lab

(2019 scheme)

Department of Electrical Engineering

College of Engineering Trivandrum

This is a controlled document of the Department of Electrical Engineering of College of

Engineering Trivandrum, Thiruvananthapuram. No part of this can be reproduced in any

form by any means without the prior written permission of the professor and the Head of the

Department of Electrical Engineering, College of Engineering Trivandrum.

Prepared By Verified By Approved By

Dr. Lekshmi Mohan Prof. Vipin VA HOD

Prof. Sohan Placid John

VISION

National Level Excellence and International Visibility in Every Facet of Engineering Research

and Education.

MISSION

To facilitate quality transformative education in Engineering and Management.

To foster innovations in Technology and its application for meeting global challenges. To

pursue and disseminate Quality Research. To equip, enrich and transform students to be

responsible professionals for better service to humanity.

DEPARTMENT OF ELECTRICAL ENGINEERING

VISION

Be a centre of excellence and higher learning in Electrical Engineering and allied areas.

MISSION

To impart quality education in Electrical Engineering and bring-up professionally competent

engineers.

To mould ethically sound and socially responsible Electrical Engineers with leadership

qualities.

To inculcate research attitude among students and encourage them to pursue higher studies.

Program Outcomes

PO1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems

PO2 Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

PO3 Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations

PO4 Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis

of the information to provide valid conclusions

PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering

activities with an understanding of the limitations.

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant

to the professional engineering practice.

PO7 Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and

need for sustainable development

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader

in diverse teams, and in multidisciplinary settings

PO10 Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give

and receive clear instructions.

PO11 Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member

and leader in a team, to manage projects and in multidisciplinary environments

PO12 Life-long learning: Recognize the need for, and have the preparation and ability to engage

in independent and life-long learning in the broadest context of technological change

Program Specific Outcomes

PSO1 Apply engineering knowledge to analyse, model, design and operate modern systems for

generation, transmission, distribution and control of electrical power.

PSO2 Design, develop and test modern hardware and software systems for signal processing,

measurement, instrumentation and control applications.

Course Objectives

 1. Familiarize and program microprocessors and microcontrollers.

 2. Hardware implementation of the embedded systems.

 Course Outcomes (COs)

 At the end of the course students should be able to:

Course Outcome

Bloom’s

Knowledge

Level (KL)

CO1 Develop and execute assembly language programs for solving arithmetic and

logical problems using microprocessors/ microcontrollers.

K4

CO2 Design and Implement systems with interfacing circuits for various

applications.

K4

CO3 Execute projects as a team using microprocessors / microcontroller for real

life applications.

K3

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping (Mapping of Course Outcomes with Program Outcomes)

 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2

CO1 3 3 2 3 2 3 2 3 3 2 3

CO2 3 3 2 3 2 3 2 3 3 2 2

CO3 3 3 2 2 2 3 3 3 3 3 2 2
1:Slight (Low), 2:Moderate(Medium), 3:Substantial (High),-:No Correlation

List of Experiments

Exp.

No
Title of experiment

1. Study of Internal Architecture of 8085 Microprocessor and Pin diagram

2. Data Transfer using Different Addressing Modes and Block Transfer

3.
Arithmetic Operations in Binary and BCD: Addition and Subtraction

4. Arithmetic Operations: Multiplication and Division

5. Binary to BCD Conversion and BCD to Binary Conversion

6. Logical Operations

7. Digital I/O using PP1-Square Wave Generation

8. Interfacing D/A Converter : Generation of Simple Waveforms- Triangular, Ramp

9. Blinking Internal LED of Arduino UNO module

10. Arduino Based Voltage Measurement

11. Introduction to 8051 Microcontroller

12. Data Transfer: Block Data Movement, Exchanging Data

13. Arithmetic Operations: Addition, Subtraction, Multiplication, Division

14. Implementation of Boolean and Logical Instructions

15. Counters: Hexadecimal and BCD Counters

EXPERIMENT 1

STUDY OF INTERNAL ARCHITECTURE OF 8085

MICROPROCESSOR AND PIN DIAGRAM

A microprocessor is a multipurpose, programmable logic device that reads binary instructions

from a storage device called memory, accepts binary data as input and processes data according

to those instructions and provides result as output. It includes an Arithmetic / Logic unit (ALU),

a control unit and an array of registers as a small internal memory for holding data while it is

being manipulated or processed. It is a general-purpose device which may be used for different

purposes in different applications. Configuration of the system is flexible.

INTERNAL ARCHITECTURE

ALU

The Arithmetic and logic unit (ALU) performs various arithmetic and logic operations like

Addition, Subtraction, Logical AND, Logical OR, Logical exclusive OR, complement (Logical

NOT), Increment (Add 1), Decrement (Subtract 1), Left shift (add input to itself) and clear

(result is zero).

REGISTERS

Registers are small memories within the CPU. They are used by the microprocessor for

temporary storage and manipulation of data and instructions. Data remain in the registers till

they are sent to the memory or I/O devices.

Registers of 8085 are

• One 8-bit accumulator (ACC) ie, register A.

• Six 8-bit general purpose registers – B, C, D, E, H and L.

• One 16-bit program counter – PC.

• Instruction register – IR.

• Status register – Flag register

• One 16-bit Stack Pointer – SP.

• Temporary register – W and Z.

ACCUMULATOR

The accumulator, one of the most important 8 - bit registers of 8085, is mainly used for

arithmetic, logic and rotate operations. The primary purpose of this register is to store

temporary data and for the placement of final values of arithmetic and logic operations. It holds

one of the operands.

GENERAL PURPOSE REGISTER

There are 6 general purpose registers in the 8085 processor, i.e. B, C, D, E, H& L. Each register

can hold 8-bit data. These registers can work in pairs to hold 16-bit data and their pairing

combination is like B-C, D-E & H-L. The H-L pair works as a memory pointer.

FLAG REGISTERS

The flag register is a group of flip-flops used to give the status of the result of different

operations. The flag register in 8085 is an 8–bit register which contains 5 bit positions. These

five flags are 1-bit F/F and are known as sign, zero, auxiliary carry, parity and carry.

CY - Carry flag, it is set when carry is generated and otherwise, it is reset.

Z – Zero flag is set if the result of an operation is zero otherwise it is reset.

S – Sign flag, Signed number is negative if S = 1 and positive if S = 0.

P – Parity flag, it is set for even parity and reset for odd parity.

AC - Auxiliary Carry flag is used for BCD operations. It is set when a carry is generated

by digit D3 and passed to D4.

TEMPORARY REGISTER

There are 2 temporary registers, W and Z. It is also called operand register (8-bit). 8085 uses

them internally to hold data temporarily during the execution of some instructions.

SPECIAL PURPOSE REGISTERS

It consists of three 16 bit registers – Program counter, Stack pointer, Incrementer / Decrementer

Latch.

PROGRAM COUNTER

It holds the address of the next instruction to be executed to save time.

STACK POINTER

Stack is a portion of memory (RAM), that works in the LIFO concept. The stack pointer

maintains the address of the last byte that is entered into the stack. Each time when the data is

loaded into the stack, the Stack pointer gets decremented.

INCR/ DECR LATCH

It is used to increment or decrement the content of program counter and stack pointer register.

ADDRESS / DATA BUFFER and ADDRESS BUFFER

The contents of the stack pointer and program counter are loaded into the address buffer and

address – data buffer. These buffers are then used to drive the external address bus and address–

data bus. As the memory and I/O chips are connected to these buses, the CPU can exchange

desired data to memory and I/O chips. The address data buffer can both send and receive data

from internal data bus.

CONTROL UNIT

It performs data transfer and decision-making operations.

It consists of :

• Instruction Register

• Instruction Decoder

• Timing and Control unit

INSTRUCTION REGISTER

When an instruction like adding two data, moving a data, copying a data etc is fetched from

memory, it is directed to the instruction register. So instruction registers are specifically to store

the instructions that are fetched from memory.

INSTRUCTION DECODER

It decodes the information present in the instruction register for further processing. It then sends

the decoded information to the timing and control unit.

TIMING AND CONTROL UNIT

It synchronizes the registers and flow of data through various registers and other units. This

unit consists of an oscillator and sends control signals needed for internal and external control

of data and other units. The oscillator generates clock signals.

Signals that are associated with this unit are:

• Control signals: READY, 𝑅𝐷̅̅ ̅̅ , 𝑊𝑅̅̅ ̅̅ ̅, ALE

• Status signals: S0, S1, IO/𝑀̅

• DMA signals: HOLD, HLDA

• Reset signals: 𝑅𝐸𝑆𝐸𝑇𝐼𝑁̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ , RESET OUT

CONTROL AND STATUS SIGNALS

• RD – Read (active low) – Indicate that I/O or memory selected is to be read and data

are available on the bus.

• WR – Write (active low) – Indicate that data available on the bus are to be written to

memory or I/O ports.

• IO/𝑀̅ - Differentiate I/O operation or memory operations.

0 – indicates a memory operation

 1 – indicates an I/O operation

• S1 and S0 – Status signals, tells current operation.

INTERRUPT CONTROLLER

Interrupt signals present in 8085 are:

1. INTR

2. TRAP

3. RST 7.5

4. RST 6.5

5. RST 5.5

Whenever the interrupt signal is enabled or requested, the microprocessor shifts the control

from the main program to process the incoming request. After the request is completed, the

control goes back to the main program.

SERIAL I/O CONTROL

The input and output of serial data can be carried out using two instructions in 8085:

1. SID - Serial input data

2. SOD - Serial output data

Data on these line is accepted or transferred under software control by serial I/O control block,

by using special instructions RIM & SIM.

8085 PIN DIAGRAM

8085 is an 8–bit, NMOS microprocessor. It is available as a 40-pin IC package fabricated on a

single LSI chip. It uses a single +5V DC supply for its operation. 8085 microprocessor has a

clock speed of about 3 MHz and the clock cycle is of 320ns. It has about 6500 transistors. It

has 80 basic instructions and 246 opcodes. It consists of three main sections, arithmetic and

logic unit, timing and control unit and several registers.

A8-A15 (Output):-

These are address bus and used for the most significant bits of memory address.

AD0-AD7 (Input/Output):-

These are time-multiplexed address data bus. These are used for the least significant 8 bits of

the memory address during first clock cycle and then for data during the second and third clock

cycle.

ALE (Address Latch Enable):-

It goes high during the 1st clock cycle of a machine. It enables the lower 8 bits of address to

be latched either in the memory or external latch.

IO/M:-

It is status signal, when it goes high; the address on address bus is for I/O device, otherwise

for memory.

S0, S1:-

These are status signals to distinguish various types of operation.

S1 S0 Operations

0 0 Halt

0 1 Write

1 0 Read

1 1 Opcode Fetch

RD (output):-

It is used to control read operation.

WR (output):-

It is used to control write operation.

HOLD (input):-

It is used to indicate that another device is requesting the use of the address & data bus.

HLDA (output):-

It is an acknowledgement signal used to indicate HOLD request has been received.

INTR (input):-

When it goes high, the microprocessor suspends its normal sequence of operations.

INTA (output):-

It is an interrupt acknowledgement signal sent by the microprocessor after INTR is received.

RST 5.5, 6.5, 7.5 and TRAP:-

These are various interrupt signals. Among them, TRAP is having highest priority.

RESET IN (input):-

It resets the PC to zero.

RESET OUT(output):-

It indicates that the CPU is being reset.

X1, X2 (input):-

This circuitry is required to produce a suitable clock for the operation of microprocessor. .

Clk (output):-

It is clock output for the user. Its frequency is the same at which the processor operates.

SID (input):-

It is used for data line for serial input.

SOD (output):-

It is used for data line for serial output.

Vcc:-

+5 volts supply.

Vss:-

Ground reference.

8085MICROPROCESSOR TRAINER KIT M85-03

M85-03 kit is a single-board Microprocessor training kit based on 8085 microprocessor.

It provides monitor EPROM and user’s RAM with battery backup. The kit has 28 keys

hexadecimal keyboard and six digit seven segment displays for display. The kit also has

the capability of interacting with a PC through an RS-232C serial link. The Input/Output

structure of M85-03 provides 48 programmable I/O lines using 8255.

PROCEDURE

EXMEM(Examine memory) keyboard command is used to examine the memory locations.

To examine the contents of the location for 2500 and 2501, the following key

sequence has to be used.

RESET→EXMEM→2500→NEXT→2501

To enter the program

RESET→ EXMEM→ Enter Starting address of program → NEXT → Enter the

machine code → NEXT

To execute the program

RESET →GO→ Starting address of program→. (Dot)(Fill Key)

To check the result

RESET→EXMEM→ Enter the address of the result location

To check the register content

Shift → EXREG → A/ B/C/D/E/H/L

EXPERIMENT 2

DATA TRANSFER USING DIFFERENT ADDRESSING MODES AND

BLOCK TRANSFER

1. Write an ALP for loading registers A, B, C, D, E, H and L with single-byte data

using immediate addressing and observe the register contents.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 3E, 01 START: MVI A,01H Load A with 01

2002 06, 02 MVI B,02H Load B with 02

2004 0E, 03 MVI C,03H Load C with 03

2006 16, 04 MVI D,04H Load D with 04

2008 1E, 05 MVI E,05H Load E with 05

200A 26, 06 MVI H,06H Load H with 06

200C 2E, 07 MVI L,07H Load L with 07

200E EF END: RST 05
Return to monitor

program

2. Write an ALP for loading registers B, C, D, E, H and L with t h e same data

using register addressing and observe the register contents.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 3A, 50, 20 START: LDA 2050H
Load accumulator

with content of 2050

2003 47 MOV B, A
Move the content

of A to B

2004 4F MOV C, A
Move the content

of A to C

2005 57 MOV D, A
Move the content

of A to D

2006 5F MOV E, A
Move the content

of A to E

2007 67 MOV H, A
Move the content

of A to H

2008 6F MOV L, A
Move the content

of A to L

2009 EF END: RST 05
Return to monitor

program

3. Write an ALP for loading register pairs BC, DE and HL with 16-bit data using

immediate addressing and observe the register pair contents.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 01, 50, 21 START: LXI B, 2150H
Load BC register pair with

data 2150

2003 11, 51, 21 LXI D, 2151H
Load DE register pair with

data 2151

2006 21, 52, 21 LXI H, 2152H
Load HL register pair with

data 2152

2009 EF END: RST 05 Return to monitor program

4. Write an ALP to copy a block of 8-bit data from 4 memory locations (2250-2253) to

another 4 memory locations (2254-2257) using direct addressing.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 3A, 50, 22 START: LDA 2250H
Load data in 2250

to accumulator

2003 32, 54, 22 STA 2254H
Accumulator content

stored in 2254

2006 3A, 51, 22 LDA 2251H
Load data in 2251

to accumulator

2009 32, 55, 22 STA 2255H
Accumulator data

stored in 2255

200C 3A, 52, 22 LDA 2252H
Load data in 2252

to accumulator

200F 32, 56, 22 STA 2256H
Accumulator data

stored in 2256

2012 3A, 53, 22 LDA 2253H
Load data in 2253

to accumulator

2015 32, 57, 22 STA 2257H
Accumulator data

stored in 2257

2018 EF END: RST 05
Return to monitor

program

5. Write an ALP to copy a block of 8-bit data from 4 memory locations (2250-2253) to

another 4 memory locations (2254-2257) using 16-bit data transfer addressing mode

direct addressing.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 2A, 50, 22 START: LHLD 2250H
Data in 2250 to L register

and data in 2251 to H

register
2003 22, 54, 22 SHLD 2254H

L register content to 2254

and H content to 2255

2055
2006 2A, 52, 22 LHLD 2252H

Data in 2252 to L register

and data in 2253 to H

register
2009 22, 56, 22 SHLD 2256H

L register content to 2256

and H content to 2257

2057
200C EF END: RST 05

Return to

monitor program

6. Write an ALP to transfer a block of 8-bit data from 4 memory locations (2250-2253) to

another 4 memory locations (2254-2257) using indirect addressing.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 21, 50, 22 START: LXI H, 2250H
Set up HL as a pointer of

source.

2003 11, 54, 22 LXI D, 2254H
Set up DE as a pointer of

destination

2006 06, 04 MVI B, 04 Set up the counter

2008 7E LOOP: MOV A, M
Get data from source to

accumulator

2009 12 STAX D Store data in destination

200A 23 INX H
Pointer to next source

location

200B 13 INX D
Pointer to next destination

location

200C 05 DCR B Decrement counter

200D C2, 08, 20 JNZ LOOP
If the transfer is not over,

continue

2010 EF END: RST 05 Return to monitor program

EXPERIMENT 3

ARITHMETIC OPERATIONS IN BINARY AND BCD: ADDITION AND

SUBTRACTION

1. Write an ALP to add two 8-bit numbers, sum 8 bits.

MEMORY
ADDRESS

MACHINE
CODE

LABEL MNEMONICS COMMENTS

2000 21, 00, 25 START: LXI H,2500H Initialize memory pointer

2003 7E MOV A, M
Load the first operand from

memory to register A

2004 23 INX H
Increment content of H-L
pair

2005 46 MOV B, M
Load the second operand

from memory to register B

2006 80 ADD B Add 1st and 2nd numbers

2007 23 INX H Pointer to store the result

2008 77 MOV M, A
Store result to
memory

2009 EF END: RST 05 Return to Monitor program

2. Write an ALP to add two 8-bit numbers, sum 16 bits.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 21, 01, 25 START: LXI H, 2501H
Address of 1st number in

H-L pair.

2003 7E MOV A, M
1st number in

accumulator.

2004 23 INX H
Address of 2nd number

2502 in H-L pair.

2005 46 MOV B, M

Load the second operand

from memory to register

B

2006 0E, 00 MVI C, 00H

MSBs of sum in register

C.

Initial value = 00.

2008 80 ADD B 1st number + 2nd number.

2009 D2, 0D, 20 JNC AHEAD
Is carry? No, go to the

label AHEAD.

200C 0C INR C Yes, increment C.

200D 23 AHEAD: INX H
Increment content of H-
L pair

200E 77 MOV M, A
Move the result from A
to memory.

200F 23 INX H
Increment content of H-
L pair.

2010 71 MOV M, C
Move the result from C to
memory.

2011 EF END: RST 05
Return to
Monitor program

3.Write an ALP to add two16 bit numbers, sum 16 bits or more.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 2A, 01, 25 START: LHLD 2501H
1st 16-bit number in H-L

pair.

2003 EB XCHG
Get 1st number in D-E

pair.

2004 2A, 03, 25 LHLD 2503H
2nd 16-bit number in H-L

pair.

2007 0E, 00 MVI C, 00H
MSBs of sum in register

C. Initial value = 00.

2009 19 DAD D 1st number + 2nd number.

200A D2, 0E, 20 JNC AHEAD
Is carry? No, go to the

label AHEAD.

200D 0C INR C Yes, increment C.

200E 22, 05, 25 AHEAD: SHLD 2505 H
Store LSBs of sum in 2505

and 2506 H.

2011 79 MOV A, C
MSBs of sum in

accumulator

2012 32, 07,25 STA 2507H MSBs of sum in 2507 H.

2015 EF END: RST 05
Return to Monitor
program

4. Write an ALP to subtract two 8-bit numbers, difference 8 bits.

MEMORY
ADDRESS

MACHINE
CODE

LABEL MNEMONICS COMMENTS

2000 21, 00, 25 START: LXI H,2500H Initialize memory pointer

2003 7E MOV A, M
Load the first operand from

memory to register A

2004 23 INX H
Increment content of H-L
pair

2005 46 MOV B, M
Load the second operand

from memory to register B

2006 90 SUB B
Subtract 2nd number from
1st number

2007 23 INX H Pointer to store the result

2008 77 MOV M, A
Store result to
memory

2009 EF END: RST 05 Return to Monitor program

5. Write an ALP for the decimal addition of two 8-bit numbers, sum 16 bits.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 21, 01, 25 START: LXI H, 2501H
Address of 1st number in

H-L pair.

2003 7E MOV A, M
1st number in

accumulator.

2004 23 INX H
Address of 2nd number

2502 in H-L pair.

2005 46 MOV B, M

Load the second operand

from memory to register

B

2006 0E, 00 MVI C, 00H

MSBs of sum in register

C.

Initial value = 00.

2008 80 ADD B 1st number + 2nd number.

2009 27 DAA Decimal adjust

200A D2, 0E, 20 JNC AHEAD
Is carry? No, go to the

label AHEAD.

200D 0C INR C Yes, increment C.

200E 23 AHEAD: INX H
Increment content of H-
L pair

200F 77 MOV M, A
Move the result from A
to memory.

2010 23 INX H
Increment content of H-
L pair.

2011 71 MOV M, C
Move the result from C to
memory.

2012 EF END: RST 05
Return to
Monitor program

6. Write an ALP to add a series of 8-bit numbers, sum 16 bits.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 21, 00, 25 START: LXI H, 2500H
Load the address of count

to HL pair

2003 4E MOV C, M
Load C with the count

value.

2004 3E, 00 MVI A, 00H
LSBs of sum = 00 (initial

value)

2006 47 MOV B, A
MSBs of sum = 00 (initial

value)

2007 23 LOOP: INX H Point to next location.

2008 86 ADD M
Add memory content with

accumulator.

2009 D2, 0D, 20 JNC AHEAD
When carry flag is 0, skip

next task.

200C 04 INR B
Yes, add carry to MSBs of

sum.

200D 0D AHEAD: DCR C Decrement C register by 1.

200E C2, 07, 20 JNZ LOOP
When Zero flag is not set,

go to Loop.

2011 32, 50, 24 STA 2450H
Store LSBs of the sum in

2450 H.

2014 78 MOV A, B
Get MSBs of sum in

accumulator.

2015 32, 51, 24 STA 2451H
Store MSBs of the sum in

2451 H.

2018 EF END: RST 05
Return to
Monitor program

7. Write an ALP to add a series of 8-bit decimal numbers, sum 16 bits.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 21, 00, 25 START: LXI H, 2500H
Load the address of count

to HL pair

2003 4E MOV C, M
Load C with the count

value.

2004 3E, 00 MVI A, 00H
LSBs of sum = 00 (initial

value)

2006 47 MOV B, A
MSBs of sum = 00 (initial

value)

2007 23 LOOP: INX H Point to next location.

2008 86 ADD M
Add memory content with

accumulator.

2009 27 DAA Decimal adjust

200A D2, 0E, 20 JNC AHEAD
When carry flag is 0, skip

next task.

200D 04 INR B
Yes, add carry to MSBs of

sum.

200E 0D AHEAD: DCR C Decrement C register by 1.

200F C2, 07, 20 JNZ LOOP
When Zero flag is not set,

go to Loop.

2012 32, 50, 24 STA 2450H
Store LSBs of the sum in

2450 H.

2015 78 MOV A, B
Get MSBs of sum in

accumulator.

2016 32, 51, 24 STA 2451H
Store MSBs of the sum in

2451 H.

2019 EF END: RST 05
Return to
Monitor program

8. Write an ALP to shift an 8-bit number left by 1 bit.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 3A, 01, 25 START: LDA 2501H Get data in accumulator.

2003 87 ADD A Shift it left by one bit.

2004 32, 02, 25 STA 2502H Store result in 2502 H

2007 EF END: RST 05 Return to monitor program

9. Write an ALP to shift an 8-bit number left by 2 bits.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 3A, 01, 25 START: LDA 2501H Get data in accumulator.

2003 87 ADD A Shift it left by one bit.

2004 87 ADD A
Shift it left again by one

bit.

2005 32, 02, 25 STA 2502H Store result in 2502 H

2008 EF END: RST 05 Return to monitor program

10. Write an ALP to shift a 16-bit number left by 1 bit.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 2A, 01, 25 START: LHLD 2501H Get 16 bit data in HL pair.

2003 29 DAD H Shift it left by one bit.

2004 22, 03, 25 SHLD 2503H
Store the result in 2503

and 2504 H.

2007 EF END: RST 05 Return to monitor program

11. Write an ALP to shift a 16-bit number left by 2 bits.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 2A, 01, 25 START: LHLD 2501H Get 16 bit data in HL pair.

2003 29 DAD H Shift it left by one bit.

2004 29 DAD H
Shift it left again by one

bit.

2005 22, 03, 25 SHLD 2503H
Store the result in 2503

and 2504 H.

2008 EF END: RST 05 Return to monitor program

EXPERIMENT 4

ARITHMETIC OPERATIONS: MULTIPLICATION AND DIVISION

1. Write an ALP to multiply two 8-bit numbers stored at locations 2500H and 2501H and

the product is stored at 2502H and 2503H.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 21, 00, 25 START: LXI H, 2500H
Load H-L pair with address

2500H

2003 46 MOV B, M
Get the first number in the B

register

2004 23 INX H Increment H-L pair

2005 4E MOV C, M
Get the second number in the C

register

2006 3E, 00 MVI A, 00H Initialise accumulator with 00H

2008 16, 00 MVI D,00H Initialise D register with 00H

200A 80 LOOP: ADD B
Add content of Accumulator to

register B.

200B D2, 0F, 20 JNC AHEAD Jump on no carry to AHEAD

200E 14 INR D
Increment D register if carry

present

200F 0D AHEAD: DCR C Decrement content of register C

2010 C2, 0A, 20 JNZ LOOP Jump on not zero to LOOP

2013 23 INX H Increment H-L pair

2014 77 MOV M, A
Move the result from accumulator

to memory location 2502H

2015 23 INX H Increment H-L pair

2016 72 MOV M, D
Move the carry from D register to

memory location 2503H

2017 EF END: RST 05 Return to monitor program

2. Write an ALP to multiply a 16-bit number by an 8-bit number. Multiplicand is stored

at locations 2100H and 2101H and the multiplier is in 2102H. The product is to be

stored at 2103H and 2104H.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 21, 02, 21 START: LXI H, 2102H
Initialize memory pointer with

2102H

2003 46 MOV B, M Load multiplier in B register

2004 11, 00, 00 LXI D, 0000H Initialise the DE pair with 0000H

2007 2A, 00, 21 LHLD 2100H Load multiplicand in H-L pair

200A EB XCHG Exchange DE with HL pair

200B 19 BACK: DAD D Add DE and HL contents

200C 05 DCR B Decrement register B

200D C2, 0B, 20 JNZ BACK If not zero, go to BACK

2010 22, 03, 21 SHLD 2103H
Store the product in HL pair to

2103H and 2104H

2013 EF END: RST 05 Return to monitor program

3. Write an ALP for binary division. The 8-bit divisor and dividend are stored at memory

locations 2100H and 2101H respectively. The remainder and quotient should be stored

at 2102H and 2103H respectively.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 21, 00, 21 START: LXI H, 2100H
Initialize HL pair as memory

pointer

2003 46 MOV B, M Load divisor in B register

2004 23 INX H Increment HL pair

2005 7E MOV A, M Load dividend to accumulator

2006 23 INX H Increment HL pair

2007 0E, 00 MVI C, 00H Initialize quotient as 00H

2009 B8 CMP B Is dividend less than divisor?

200A DA, 13, 20 JC AHEAD If yes, jump to AHEAD

200D 90 BACK: SUB B Subtract divisor from dividend

200E 0C INR C Increment C register

200F B8 CMP B Is dividend less than divisor

2010 D2, 0D, 20 JNC BACK If no carry, jump to BACK

2013 77 AHEAD: MOV M, A Store remainder at 2102H

2014 23 INX H Increment HL pair

2015 71 MOV M, C Store quotient at 2103H

2016 EF END RST 05 Return to monitor program

EXPERIMENT 5

BINARY TO BCD CONVERSION AND BCD TO BINARY CONVERSION

1. Write an ALP to convert BCD to Binary

MEMORY
ADDRESS

MACHINE
CODE

LABEL MNEMONICS COMMENTS

2000 3A, 00, 25 START: LDA 2500H
Load accumulator with content
of address 2500H

2003 47 MOV B, A
Move data from accumulator to
reg. B

2004 E6, F0 ANI F0H
AND F0 with accumulator
content

2006 0F RRC
Rotate accumulator content
right by 1 bit

2007 0F RRC
Rotate accumulator content
right by 1 bit

2008 0F RRC
Rotate accumulator content
right by 1 bit

2009 0F RRC
Rotate accumulator content
right by 1 bit

200A 57 MOV D, A
Move data from accumulator to
reg. D

200B 0E, 0A MVI C, 0AH Initialise C register with 0AH

200D 97 SUB A
Subtract A from A (clearing
accumulator)

200E 82 BACK: ADD D Add D with A

200F 0D DCR C Decrement C register

2010 C2, 0E, 20 JNZ BACK Jump if not zero to BACK

2013 57 MOV D, A
Move data from accumulator to
reg D

2014 78 MOV A, B
Move data from reg B to
accumulator

2015 E6, 0F ANI 0FH
AND 0F with accumulator
content

2017 82 ADD D Add D with A

2018 32, 01, 25 STA 2501H
Store accumulator content in
2501H

201B EF END: RST 05 Return to monitor program

2. Write an ALP to convert Binary to BCD

MEMORY
ADDRESS

MACHINE
CODE

LABEL MNEMONICS COMMENTS

2000 16,00 START: MVI D, 00H Initialise D with 00H

2002 1E,00 MVI E, 00H Initialise E with 00H

2004 21, 00, 24 LXI H, 2400H
Load H-L pair with address
2400H

2007 7E MOV A, M
Move data from memory to
accumulator

2008 FE, 64 HUND: CPI 64H
Compare data in accumulator
with 64H

200A DA 13, 20 JC TEN Jump on carry to label TEN

200D 1C INR E Increment E register

200E D6, 64 SUI 64H Subtract 64H from accumulator

2010 C3, 08, 20 JMP HUND Jump to label HUND

2013 FE, 0A TEN: CPI 0AH
Compare data in accumulator
with 0AH

2015 DA, 1E, 20 JC UNIT Jump if carry to label UNIT

2018 14 INR D Increment D register

2019 D6, 0A SUI 0AH Subtract 0AH from accumulator

201B C3, 13, 20 JMP TEN Jump to label TEN

201E 23 UNIT: INX H Increment H-L pair

201F 73 MOV M,E
Move data from reg. E to
memory

2020 4F MOV C,A
Move data from accumulator
to reg. C

2021 7A MOV A,D
Move data from reg. D to
accumulator

2022 07 RLC
Rotate accumulator content left
by 1 bit

2023 07 RLC
Rotate accumulator content left
by 1 bit

2024 07 RLC
Rotate accumulator content left
by 1 bit

2025 07 RLC
Rotate accumulator content left
by 1 bit

2026 81 ADD C Add C with A

2027 23 INX H Increment H-L pair

2028 77 MOV M, A
Move data from accumulator
to memory

2029 EF END: RST 05 Return to monitor program

EXPERIMENT 6

LOGICAL OPERATIONS

1. Write an ALP to find the larger of two numbers.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 21, 01, 25 START: LXI H, 2501H Address of 1st number in H-L pair.

2003 7E MOV A, M 1st number in accumulator.

2004 23 INX H
Address of 2nd number in H-L

pair.

2005 BE CMP M
Compare 2nd number with 1st

number. Is the 2nd number >1st ?

2006 D2, 0A, 20 JNC AHEAD
No, larger number is in

accumulator. Go to AHEAD.

2009 7E MOV A, M
Yes, get 2nd number in

accumulator.

200A 32, 03, 25 AHEAD: STA 2503H Store larger number in 2503H.

200D EF END: RST 05 Return to monitor program

2. Write an ALP to find the smaller of two numbers.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 21, 01, 25 START: LXI H, 2501H Address of 1st number in H-L pair.

2003 7E MOV A, M 1st number in accumulator.

2004 23 INX H
Address of 2nd number in H-L

pair.

2005 BE CMP M
Compare 2nd number with 1st

number. Is the 2nd number >1st ?

2006 DA, 0A, 20 JC AHEAD
Yes, smaller number is in

accumulator. Go to AHEAD.

2009 7E MOV A, M
No, get 2nd number in

accumulator.

200A 32, 04, 25 AHEAD: STA 2504H Store smaller number in 2504H.

200D EF END: RST 05 Return to monitor program

3. Write an ALP to find the largest number in an array of 8-bit numbers.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 21, 00, 25 START: LXI H, 2500H Address for count in H-L pair.

2003 4E MOV C, M Count in register C.

2004 23 INX H Address of 1st number in H-L pair.

2005 7E MOV A, M 1st number in accumulator.

2006 0D DCR C Decrement count.

2007 23 LOOP: INX H Address of next number.

2008 BE CMP M
Compare next no. with previous

maximum. Is next no. > previous?

2009 D2, 0D, 20 JNC AHEAD
No, larger number is in accumulator.

Go to the label AHEAD.

200C 7E MOV A, M
Yes, get larger number in

accumulator.

200D 0D AHEAD: DCR C Decrement count.

200E C2, 07, 20 JNZ LOOP Jump if not zero.

2011 32, 50, 24 STA 2450H Store result in 2450H.

2014 EF END: RST 05 Return to monitor program

4. Write an ALP to find the smallest number in an array of 8-bit numbers.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 21, 00, 25 START: LXI H, 2500H Address for count in H-L pair.

2003 4E MOV C, M Count in register C.

2004 23 INX H Address of 1st number in H-L pair.

2005 7E MOV A, M 1st number in accumulator.

2006 0D DCR C Decrement count.

2007 23 LOOP: INX H Address of next number.

2008 BE CMP M
Compare next no. with previous

maximum. Is next no. > previous?

2009 DA, 0D, 20 JC AHEAD
Yes, smaller number is in accumulator.

Go to the label AHEAD.

200C 7E MOV A, M
No, get smaller number in

accumulator.

200D 0D AHEAD: DCR C Decrement count.

200E C2, 07, 20 JNZ LOOP Jump if not zero.

2011 32, 51, 24 STA 2451H Store result in 2451H.

2014 EF END: RST 05 Return to monitor program

5. Write an ALP to sort an array of 8-bit numbers in the descending order.

MEMORY

ADDRESS

MACHINE

CODES
LABEL MNEMONICS COMMENTS

2000 21, 00, 26 START: LXI H, 2600H Set pointer for array.

2003 4E MOV C, M Load the Count.

2004 0D DCR C Decrement Count.

2005 51 REPEAT: MOV D, C
Count the number of Comparisons

in register D.

2006 21, 01, 26 LXI H, 2601H
Load starting address of data

array.

2009 7E LOOP: MOV A, M
Copy content of memory location

to Accumulator.

200A 23 INX H Increment content of HL pair

200B BE CMP M
Compare the number with next

number.

200C D2, 14, 20 JNC SKIP
Jump to skip if carry not

generated.

200F 46 MOV B, M
Copy content of memory location

to B Register.

2010 77 MOV M, A
Copy content of Accumulator to

memory location.

2011 2B DCX H Decrement content of HL pair

2012 70 MOV M, B
Copy content of B Register to

memory location.

2013 23 INX H Increment content of HL pair

2014 15 SKIP: DCR D Decrement D register

2015 C2, 09, 20 JNZ LOOP Jump to LOOP if not Zero.

2018 0D DCR C Decrement C register

2019 C2, 05, 20 JNZ REPEAT Jump to REPEAT if not Zero.

201C EF END: RST 05 Return to monitor program

6. Write an ALP to sort an array of 8-bit numbers in the ascending order.

MEMORY

ADDRESS

MACHINE

CODES
LABEL MNEMONICS COMMENTS

2000 21, 00, 26 START: LXI H, 2600H Set pointer for array.

2003 4E MOV C, M Load the Count.

2004 0D DCR C Decrement Count.

2005 51 REPEAT: MOV D, C
Count the number of Comparisons

in register D.

2006 21, 01, 26 LXI H, 2601H
Load starting address of data

array.

2009 7E LOOP: MOV A, M
Copy content of memory location

to Accumulator.

200A 23 INX H Increment content of HL pair

200B BE CMP M
Compare the number with next

number.

200C DA, 14, 20 JC SKIP Jump to skip if carry generated.

200F 46 MOV B, M
Copy content of memory location

to B Register.

2010 77 MOV M, A
Copy content of Accumulator to

memory location.

2011 2B DCX H Decrement content of HL pair

2012 70 MOV M, B
Copy content of B Register to

memory location.

2013 23 INX H Increment content of HL pair

2014 15 SKIP: DCR D Decrement D register

2015 C2, 09, 20 JNZ LOOP Jump to LOOP if not Zero.

2018 0D DCR C Decrement C register

2019 C2, 05, 20 JNZ REPEAT Jump to REPEAT if not Zero.

201C EF END: RST 05 Return to monitor program

EXPERIMENT 7

DIGITAL I/O USING PPI- SQUARE WAVE GENERATION

Aim

To generate a pulse train of frequency 200 Hz and duty cycle 50%.

Theory

Waveform generation using microprocessor requires input-output ports interfaced to it.

Programmable peripheral interface (PPI) 8255 is a general purpose programmable I/O

device designed to interface the CPU with its outside world such as ADC, DAC, keyboard

etc. IC 8255 provides 3 nos. of 8-bit ports (Port A, Port B and Port C). IC 8255 needs to

be initialized before use. Initialization includes setting mode of 8255 (Input-Output or

Bit Set Reset) and data direction in case of IO mode (Input or Output) for individual ports.

In this case, 8255 is setup in I/O mode with all ports as output ports. So the initialization

control word is 80H.

The data send out from microprocessor to 8255 may be directed to Port A, B, C or Control

Word Register (CWR). Each register mentioned above is given an 8-bit address.

I/O address range

Port A = 00H; Port B = 01H; Port C = 02H; Control word Register CWR = 03H

To initialize the 8255, load control word (80H) in Accumulator and send it to CWR

(03H)

8255-I CONNECTOR-CN4

PIN SIGNALS PIN SIGNALS

1 P1C4 14 P1B1

2 P1C5 15 P1A6

3 P1C2 16 P1A7

4 P1C3 17 P1A4

5 P1C0 18 P1A5

6 P1C1 19 P1A2

7 P1B6 20 P1A3

8 P1B7 21 P1A0

9 P1B4 22 P1A1

10 P1B5 23 P1C6

11 P1B2 24 P1C7

12 P1B3 25 GND

13 P1B0 26 VCC

• PA0 – PA7 – Pins of port A

• PB0 – PB7 – Pins of port B

• PC0 – PC7 – Pins of port C

• D0 – D7 – Data pins for the transfer of data

• RESET – Reset input

• RD’ – Read input

• WR’ – Write input

• CS’ – Chip select

• A1 and A0 – Address pins

Algorithm- Square Wave Waveform

Delay Calculation

 The delay time required for frequency of 200 Hz is 2500µs for low and high

states. Time delay subroutines load a value in a register or register-pair and

decrement it. When the value equals 0, it returns.

The statements from DCX D to JNZ REP is repeated N times (where N is

loaded in DE register-pair). LXI D, N and RET are executed only once.

Total T states in time delay = 24N +17

System frequency = 3.072 MHz

Thus, 1 T state = 0.3255μs

Time delay, td = (24N + 17) x 0.3255μs

For a delay of 2500 μs,

2500x10-6 = (24xN + 17) x 0.3255x10-6

N = 31910 = 013FH

Algorithm:

1. Start

2. Set control word (Port A as output port)

3. Set port A low

4. Call delay

5. Set port A high

6. Call delay

7. Go to Step 3

Program

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 3E, 80 MVI A, 80H
Load A with immediate data

80H

2002 D3, 03 OUT 03H Send content of A to CWR

2004 3E, 00 LOOP: MVI A, 00H
Load A with immediate data

00H

2006 D3, 00 OUT 00H
Send content of Acc to

output port A

2008 CD, 15, 20 CALL DELAY Call the delay subroutine

200B 3E, FF MVI A, FFH
Load A with immediate data

FFH

200D D3, 00 OUT 00H
Send content of Acc to

output port A

200F CD, 15, 20 CALL DELAY Call the delay subroutine

2012 C3, 04, 20 JMP LOOP Jump to LOOP to repeat

DELAY SUBROUTINE

2015 11, 3F, 01 DELAY: LXI D, 013FH
Load DE register pair with

value of N

2018 1B REP: DCX D Decrement D

2019 7A

MOV A, D Move content of D to A

201A B3

ORA E
OR the value of E with A

and store the result in A

201B C2,18, 20

JNZ REP Jump on non zero to REP

201E C9

RET Return to main program

Procedure

Enter the program for square wave generation from memory location 2000H

onwards. Execute the program and observe the waveform available at the pins of

port A. (Connect the probe to the corresponding Port A signal pins of CN4

connector)

Result

EXPERIMENT 8

INTERFACING D/A CONVERTER : GENERATION OF SIMPLE

WAVEFORMS-TRIANGULAR, RAMP

i. Triangular Waveform

Aim

 To generate a triangular wave of suitable amplitude using DAC interface.

Algorithm

1. To initialize 8255, load control word (80H) in Accumulator and sent it to

CWR (03H)

2. Clear Accumulator

3. Send Accumulator content to output port A (00H)

4. Increment Accumulator data

5. If Accumulator content not equal to FFH, go to Step 3

6. Out Accumulator content to Port A (00H)

7. Decrement Accumulator

8. If Accumulator content not equal to 00H, go to Step 6

9. Go to Step 3

Program

MEMORY

ADDRESS

MACHINE

CODE

LABEL MNEMONICS COMMENTS

2000 3E, 80 MVI A, 80H
Load Acc with immediate

data 80H

2002 D3, 03 OUT 03H Send content of Acc to CWR

2004 AF XRA A Clear the accumulator

2005 D3, 00 LOOP1: OUT 00H
Output the contents of Acc to

the output port A

2007 3C INR A Increment Acc

2008 FE, FF CPI FFH
Compare the content of

Accumulator with maximum

count

200A C2, 05, 20 JNZ LOOP1
Jump to LOOP1 if the result of

comparison is not equal to zero

200D D3, 00 LOOP2: OUT 00H
Output the value in acc at the

port A

200F 3D DCR A Decrement Acc

2010 C2, 0D, 20 JNZ LOOP2
Jump to LOOP2 if result of

comparison is not equal to zero

2013 C3, 05, 20 JMP LOOP1
Jump to LOOP1 to repeat the

process

ii. Ramp (Sawtooth) Waveform

Aim

 To generate a sawtooth waveform of suitable amplitude using DAC interface.

Algorithm:

1. To initialize 8255, load control word (80H) in Accumulator and sent it to CWR

(03H)

2. Clear Accumulator

3. Out Accumulator content to Port A

4. Increment Accumulator

5. Go to Step 3

(Since Accumulator is an 8-bit register, incrementing from FFH results in 00H)

Program

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 3E, 80 MVI A, 80H
Load A with immediate data

80H

2002 D3, 03 OUT 03H
Send the contents of A to output

port

2004 AF XRA A
EXOR the value of A with A

itself. This resets/clear

the accumulator.

2005 D3, 00 LOOP: OUT 00H Output the content of A to port

2007 3C INR A Increment A

2008 C3, 05, 20 JMP LOOP Jump to LOOP

Procedure

Enter the program from memory location 2000H onwards. Connect the CN4

pins of 8255 with the DAC module. Execute the program and observe the

output between X- Out and GND pins of the DAC.

Result

The following waveforms were generated using 8085.

Triangular waveform

Ramp waveform

Arduino UNO module

Arduino is an open-source physical computing platform based on a simple microcontroller

board, and a development environment for writing software for the board. The name “Arduino”

is a copyright held by the original team based in Italy that originally built the hardware, the

IDE (integrated development environment) and the software libraries. Arduino development

environment can be run on either Windows, Linux and MacOS for no cost other than for the

hardware. The software is freely downloadable in one bundle from www.arduino.cc, the

website that is ground-zero for all-things-Arduino.

Arduino can sense the environment by receiving input from a variety of sensors and can affect

its surroundings by controlling lights, motors, and other actuators.

The Arduino board comes with a single LED, often called the Pin 13 LED because it is

electrically connected to Digital Pin 13. This LED is the board's only built-in indicator

accessible to programs.

http://www.arduino.cc/

 EXPERIMENT 9

BLINKING INTERNAL LED OF ARDUINO UNO MODULE

Aim

 To blink internal LED of Arduino UNO

Procedure

 In the menu of the Arduino IDE you can choose:

File ▸ Examples ▸ 01. Basics ▸ Blink

The IDE will open the code to blink the builtin LED automatically.

Uploading code to the Arduino

Now our program is ready to upload to the Arduino. First we have to connect our Arduino to

the computer with the USB cable. Make sure you've selected the correct board in the IDE:

Tools ▸ Board ▸Arduino/Genuino UNO

and the correct port:

Tools ▸ Port

If you are not sure which port to use, try them all until you can successfully upload your code.

Then verify your code for possible errors. The IDE only checks if it can read your code. It does

not check if you have written correct code for what you are trying to program.

If everything works, the IDE shows the Compiling completed message. You can now upload

your code by pressing the upload button. The uploading is complete when the messages

appears. Your program will immediately start after uploading. As a result you should now see

your Arduino LED blink with 1000ms intervals.

Program

void setup()

 {

 // initialize digital pin LED_BUILTIN as an output.

 pinMode(LED_BUILTIN, OUTPUT);

 }

 // the loop function runs over and over again forever

void loop()

 {

 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)

 delay(1000); // wait for a second

 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW

 delay(1000); // wait for a second

}

Result

BLINKING EXTERNAL LED USING ARDUINO UNO MODULE

Aim

 To blink an externally connected LED using Arduino UNO

Program

int LED = 8;

void setup()

 {

// initialize digital pin LED as an output.

pinMode(LED, OUTPUT);

 }

 // the loop function runs over and over again forever

void loop()

 {

digitalWrite(LED, HIGH); // turn the LED on (HIGH is the voltage level)

delay(1000); // wait for a second

digitalWrite(LED, LOW); // turn the LED off by making the voltage LOW

delay(1000); // wait for a second

}

Result

EXPERIMENT 10

ARDUINO BASED VOLTAGE MEASUREMENT

Aim

 To measure a DC voltage in range 0-9 V using Arduino UNO

Theory

A voltage divider circuit consisting of two resistors in series will divide the input voltage to

bring it within the range of the Arduino analog inputs.

Design

(Design the suitable values of R1 & R2, such that maximum voltage across R2 will be 5V,

when actual maximum input voltage is applied across series combination, in this case, 9V)

Program

int value = 0;

float voltage;

float R1 = 100.0;

float R2 = 330.0;

void setup()

 {

 pinMode(A0, INPUT);

 Serial.begin(9600);

 }

void loop()

 {

 value = analogRead(A0);

 voltage = value * (5.0/1024)*((R1 + R2)/R2);

 Serial.print("Voltage =");

 Serial.println(voltage);

 delay(500);

}

Circuit Diagram

Result

Experiment 11

INTRODUCTION TO 8051 MICROCONTROLLER

Microcontroller is a programmable logic device that has computing and decision-making

capability similar to that of a CPU of a computer.

The Microcontroller communicates and operates in the binary numbers 0 and 1 called bits. Each

Microcontroller has a fixed set of instruction in the form of binary patterns called machine language.

However, it is difficult for human to communicate in the language of 0s and 1s. Therefore, the binary

instructions given abbreviated names called mnemonics, which form the assembly language for given

microcontroller. An assembler is used to convert assembly language to machine language. For example,

if we have to add two numbers in A and B. we can use the instruction ADD A, B. This add instruction

is an example of mnemonics. Its machine language form will be 58, 65. This 58, 65 can be obtained

from microcontroller manual. 58 in hexadecimal represents the machine language instruction for ADD

and 65 represents A, B.

Each microcontroller recognizes and process a group of bits called the word and microcontrollers

are classified according to their word length. For example, a controller with an 8-bit word is known as

an 8-bit microcontroller and a controller with 32-bit word is known as a 32 bit microcontroller.

Organization of a Microcontroller Based system

CPU RAM ROM

I/O Timer Serial Comport

Micro controller is a self-contained system or self-sufficient system having CPU, internal RAM,

internal ROM, Timers and counters, I/O ports, serial com port.

Micro controller is a specific purpose digital controller that is meant to read data, perform limited

calculations on that data and control its environment based on those calculations

APPLICATIONS

1. Measuring instruments such as the oscilloscope, multimeter and the spectrum analyzer

2. Music related equipment such as synthesizers

3. House hold items, such as the microwave oven, doorbell, washing machine and television.

4. Defence equipment such as fighter planes, missiles and radar.

5. Medical equipment such as blood pressure monitors, blood analyzers and monitoring system

ARCHITECTURE

The accumulator register ‘A’:- The most important data register is the A register which acts as the

accumulator. It is a mandatory that the A register carry one of the operands for all arithmetic instructions.

The other operand may be in memory (RAM) or in any other register.

Register B:- The register B is not a frequently used register, because it can be used as an operand only

for some specific operations like multiplication of two numbers, one operand should be in A , and the

other should be B. Same is the case for division. But it can store data.

Internal RAM:- Totally, the 8051 has 256 bytes of RAM, but half of it is reserved to act as the “special

function registers”, that is , the registers which are used to handle the activities of the peripherals of the

device. The remaining 128 bytes is what is referred to as internal RAM, and is divided into parts. The

first 32 bytes act as register banks 0 to 3; each bank contains 8 data registers named R0 to R7. These

registers are used for data manipulations and data movement. At a time, only one of these banks is

operational. It is possible to switch from the current bank to another bank by using two bits of the PSW.

By default, it is bank 0 that is the current bank. RAM locations from 0 to 7 are set aside for bank 0

,where R0 is RAM location 0, R1 is RAM location1, R2 is location 2, and so on, until memory location

7, which belongs to R7 of bank 0. The second bank of registers R0- R7 starts at RAM location 08H and

goes to location of 0F H. The third bank of R0-R7 starts at memory location 10H and goes to location

17H. Finally RAM locations 18H to IFH are set aside for the fourth bank of R0-R7.

Bank 1 uses the same RAM as the stack. A total of 16 bytes from locations 20 H to 2 FH are set aside

for bit addressable read/write memory. A total of 80 bytes from locations 30 H to 7FH are used for read

and write storage or what is normally called a scratch pad. These 80 locations of RAM are widely used

for the purpose of storing data and parameters by 8051 programmers

Default register bank – Bank O

How to switch register banks? Register bank O is the default when the 8051 is powered up. We can

switch to other banks by use of the PSW (program status word) register. Bits D4 and D3 of the PSW are

used to select the desired register bank as shown in Table.

 RS1 (PSW.4) RSO (PSW.3)

Bank 0 0 0

Bank 1 0 1

Bank 2 1 0

Bank 3 1 1

The D3 and D4 bits of register program status word(PSW) are often referred to as PSW.4 and

PSW.3 since they can be accessed by the bit addressable instructions SETB and CLR. For example,

“SETB PSB.3” will make PSW.3 = 1 and select bank register 1.

Stack in the 8051:- The stack is a section of RAM used by the CPU to store information temporarily.

This information could be data or address. The CPU needs this storage area since there are only a limited

number of registers.

How stacks are accessed in the 8051 :- The register used to access the stack is called the SP (stack

pointer) register. The stack pointer in the 8051 is only 8 bits wide, which means that RAM location 08

is the first location used the stack by the 8051. The storing of a CPU register in the stack is called a

PUSH, and pulling the contents off the stack back into a CPU register is called a pop. In other words, a

register is pushed onto the stack to save it and popped off the stack to retrieve it.

Pushing onto the stack: - In the 8051 the stack pointer (SP) points to the last location of the stack. As

we push data onto the stack, the stack pointer (SP) is incremented by one. For every byte of data saved

on the stack, SP is incremented only once.

Popping from the stack:- Popping the content of the stack back into a given register is the opposite

process of pushing .With every pop, the top byte of the stack is copied to the register specified by the

instructions and the stack pointer is decremented once.

The upper limit of the stack: Locations 08 to 0F in the 8051 RAM can be used for the stack. This

is because locations 20- 2FH of RAM are reserved for bit addressable memory and must not be used by

the stack. If in a given program we need more area, we can change the SP to point to RAM locations

30-7FH. This is done with the instruction “MOV SP, #XX”.

CALL instruction and the stack: In addition using the stack to save registers, the CPU also used

the stack to save the address of the instruction just below the CALL instruction. This is how the CPU

knows where to resume when it returns from the called subroutine

PSW (program status word) register:- The PSW register is an 8-bit register. It is also referred to as

the flag register. Although the PSW register is 8 bits wide, only 6 bits of it are used by the 8051. The

two unused bits are user-definable flags. Four of the Flags are called conditional flags, meaning that

they indicate some conditions that result after am instruction being executed. These four are CY (carry

) AC (auxiliary carry) P (parity) and OV (over flow). The bits PSW.3 and PSW.4 are designated as RSO

and RSI, respectively and are used to change the bank registers. The PSW.5 and PSW.1 bits are general

– purpose status flag bits and can be used by the programmer for any purpose

CY AC F0 RS1 RS0 OV - P

CY PSW.7 carry flag

AC PSW.6 Auxiliary carryflag

FO PSW.5 Available to the user for general purpose

RS1 PSW.4 Register Bank selector bit 1

RS0 PSW. 3 Register Bank selector bit 0

OV PSW.1 user definable bit

P PSW.0 parity flag

RS1 RS0 Register Bank

0 0 0

0 1 1

1 0 2

1 1 3

CY the carry Flag: - this flag is set whenever there is a carry out from the D7 bit. This flag bit is

affected after an 8-bit addition or subtraction. It can also be set to 1 or 0 directly by an instruction such

as “SETB C” and CLR C” where “SETB C” stands for “set bit carry” and “CLRC” for “clear carry”

Eg.:- MOV A, #9CH

ADD A, # 64 H

CY=1

AC, the auxiliary carry flag

If there is a carry from D3 to D4 during an ADD or SUB operation, this bit is set; otherwise, it is cleared.

This flag is used by instructions that perform BCD arithmetic

Eg. MOV A, #9CH

ADDA, # 64 H’

AC=1

P, the parity flag

The parity flag reflects the number of 1s in the accumulator register only. If the A register contains an

odd number of Is, then p=1. Therefor, p= 0 if A has an even number of 1s

Eg. MOV A, #9CH

ADD A, # 64H

P=0

OV the overflow flag

This flag is set whenever the result of a signed number operation is too large causing the high – order

bit to overflow into the sign bit. In general, the carry flag is used to detect errors in unsigned arithmetic

operations. The overflow flag is only used to detect errors in signed arithmetic operations.

ROM

ROM can be 4k on chip and 60k external ROM or 64k external

Addressing modes

The CPU can access data in various ways. The data could be in a register, or in memory, or be provided

as an immediate value. These various ways of accessing data are called addressing modes. The various

addressing modes of a microprocessor are determined when it is designed, and therefore cannot be

changed by the programmer. The 8051 provides a total of five distinct addressing modes. They are as

follows.

1. Immediate

2. Register

3. Direct

4. Register Indirect

5. Indexed

1.Immediate, addressing mode:- In this addressing mode, the source operand is a constant. In

immediate addressing mode, as the name implies, when the instruction is assembled, the operand comes

immediately after the opcode. The immediate data must be preceded by the pound sign, “#” This

addressing mode can be used to load information into any of the registers including the DPTR register.

Examples follows

MOV A, #25H ;load 25H into A

MOV R4, #62 ; load 62 into R4

MOV DPTR, #4521 ; DPTR = 4521

2.Register addressing mode : Register addressing mode involves the use of registers to hold the data

to be manipulated.

Eg : MOVA, R0; copy the contents of R0 into A.

 The source and destination registers must match in size. In other words, coding “MOV DPTR,

A” will give an error, since the source is an 8 bit register and the destination C5 a 16 bit register.

 We can move data between the accumulator and Rn (n = 0 to 7) but movement of data between

Rn register is not allowed. For example, the instruction “MOV R4, R7” is invalid.

3.Direct addressing modes : There are 128 bytes of RAM in the 8051. The RAM has been assigned

addresses 00 to 7FH

1. RAM locations 00-1FH are assigned to the register banks and stack.

2. RAM locations 20-2FH are set aside as bit addressable space to save single bit data.

3. RAM locations 30-7FH is available as place to save byte sized data.

 Although the entire 128 bytes of RAM can be accessed using direct addressing mode, it is most

often used to access RAM locations 30-7FH. This is due to the Fact that register bank locations are

accessed by the register names R0-R7, but there is no such name for other RAM locations. In the direct

addressing mode the data is in RAM memory locations whose address is known, and this address is

given as a part of the instruction. Contrast this with immediate addressing mode, in which the operand

itself is provided with the instruction. The “#” sign distinguishes between the two modes.

 MOV R0, 40H; save content of RAM location 40H in R0 RAM locations. These registers can

be accessed in two ways

MOV A, 4 ; is same as

MOV A, R4 ; which means copy R4 into A

4.Register indirect addressing mode

 In the register indirect addressing mode, a register is used as pointer to the data. Register R0 and

R1 are used for this purpose. In other words R2-R7 cannot be used to hold the address of an operand

located in RAM when using this addressing mode when R0 and R1 are used as pointers, that is, when

they hold the addresses of RAM locations, they must be preceded by the “@” sign, as show below MOV

A, @R0; move contents of RAM location whose address is held by R0 into A.

 MOV @ R1, B ; move contents of B into RAM locations

 whose address is held by R1.

Adv : - one of the advantages of register indirect addressing mode is that it makes accessing data

dynamic rather than static as in the case of direct addressing mode. Looping is not possible in direct

addressing mode. This is the main difference between the direct and register indirect addressing modes.

5.Indexed addressing modes is widely used in accessing data elements of look-up table entries located

in the program ROM space of the 8051. The instruction used for this purpose is “MOVC A, @

A+DPTR”. The 16-bit register DPTR and register A are used to form the address of the data element

stores in on-chip ROM. Because the data elements are stored in the program (code) space ROM of the

8051, the instruction MOVC is used instead of MOV. The “c” means code. In this instruction the

contents of A are added to the 16bit register DPTR to form the 16 bit address of the needed data.

PORTS

For input output operations, 8051 has 4 ports.

PORT 0

Port 0 provides both address and data. The 8051 multiplexes address and data through port 0 to

save pins. When ALE=0, it provides data D0-D7, but when ALE = 1 it has address A0-A7. Therefore,

ALE is used for de multiplexing address and data with the help of a 74L5373 latch..

PORT1 and PORT2

In 8051 based systems with no external memory connection, both P1 and P2 are used as simple

Input –Output. However, in 8031/8051 based systems with external memory connections, port 2 must

be used along with P0 to provide the 16-bit address for the external memory

PORT3

Occupies a total of 8 pins. It can be be used as input or output. Although port is configured as an input

port upon reset, this is not the way it is most commonly used. Ports has the additional function of

providing some extremely important signals such as interrupts.

P3 bit Function Pin

P3.0 RxD 10

P3.1 TxD 11

P3.2 INTO 12

P3.3 INTI 13

P3.4 T0 14

P3.5 T1 15

P3.6 WR 16

P3.7 RD 17

P3.1 are used for the RXD and TXD serial communications signals. Bits P3.2 and P3.3 are set aside

for external interrupts. Bits P3.4 and P3.5 are used for Timers 0 and 1. P3.6 and P3.7 are used to

provide the WR and RD signals of external memory connections.

Experiment 11.A
STUDY OF 8051 MICROCONTROLLER TRAINER KIT

AIM:

To familiarize 8051microcontroller kit and execute simple programs

HARDWARE SPECIFICATIONS OF THE 8051 MICROCONTROLLER:-

Make: KITEK

i. Processor, Clock Frequency

Intel 8051/89C51 at 12MHz (89C51 max upto 33MHz).

ii. Memory

System EPROM : 0000 - 3FFFH & C000 - FFFFH

System RAM : 4000 - BFFFH

Additional RAM : 0000 - 3FFFH & C000 - FEFFH

Monitor Buffer : 4000 - 40FFH

User Program / Data RAM area : 4100 - BFFFH

User Data RAM area : 0000 - 3FFFH & C000 - FEFFH

Memory mapped I/O : FF00 - FF1FH, FFC0 - FFFFH

Memory mapped I/O expansion : FF20 – FFBFH

Note: The RAM area is from 4000 - 40FF should not be accessed by the user since it is used by

the monitor program

iii. Input / Output

Parallel : 24 I/O lines using two numbers of 8255.

Serial : 1 Number of RS232 Serial Interface using 8051

Serial Port.

Timer : 8051 has two 16 bit Timer namely Timer 0 and

Timer 1

 89C51 has 3 16 bit Timer / Counter.

Printer : One Centronics Compatible Printer interface

through 8255-I port.

Interrupt : 8051 provides 5 interrupt sources. Among them two

are external interrupts called INT0 and INT1.

iv. Display (Optional)

6 Digit, 0.3", 7-segment Red LED display with filter.

4 Digits for address display.

2 Digits for data display

Based on 8279 - keyboard and display controller.

.

v. LCD Interface

16 × 2 alpha numeric LCD display Module

vi. IBM PC Keyboard Interface

vii. Keyboard : 101 ASCII keyboard

viii. Onboard Battery Backup (Optional)

Onboard Battery backup facility is provided for 64kb RAM 4000 - BFFF.

ix. System Power Consumption

+ 5V : 3 Amp

+12V : 200mA

-12V : 100mA

+30V : 300mA

PARALLEL INTERFACE DETAILS

Intel 8255(Programmable Peripheral Interface) is used for parallel interface. I/O system

mapping is used. Memory mapped I/O addresses are given below

Activerangeportaddress

Portnumbers

Selecteddevice

8255 – I

(FF0C–FF0F)

FF0C

FF0D

FF0E
FF0F

PORT

APORT

BPORT

C PORT
CONTROL
WORD

PROGRAMMABLE

PERIPHERAL

INTERFACE

PROCEDURE

Procedure for entering the program is given below.
1. For writing program select line assembler by simply pressing the key ‘A’ and

Enter key. After the command the LCD screen will prompt you to enter the “Start

Address”

2. Enter the starting address and press the enter key.

3. Now enter the instruction in assembly language one by one. After each instruction press

enter key.

4. To examine or imply modify data in a memory location, type “SD” followed by the memory

location, and press enter.

5. To un assemble, use “U” in the home menu and press enter

6. To execute press, type ‘GO’ followed by the starting address location of the program and press enter

key

Further Commands available are:

1. Substitute Memory Command

Syntax:

#SD <Addr><CR> - for Data Memory

2. Register View / Modify

#R <CR>

3. GO Command

GO <Addr><CR>

4. Internal Ram Access command

#IR <Addr><CR>

To view that bytes in the internal RAM location (00 - 7F).

5. Assemble

#A <CR>

6. Unassemble

#U <CR>

EXPERIMENT 12

DATA TRANSFER: BLOCK DATA MOVEMENT, EXCHANGING DATA

1. Write an ALP to move a block of data from one location to another.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

4100 78, 0A MOV R0, #0AH Setting count

4102 75, 82, 00

MOV DPL, #00H Setting DPL = 00H

4105 75, 83, 45 LOOP: MOV DPH, #45H Setting DPH = 45H

4108 E0

MOVX A, @DPTR
Moving data from external

memory to accumulator

4109 75, 83, 50

MOV DPH, #50H Setting DPH = 50H

410C F0 MOVX @DPTR, A
Moving data from accumulator

to external memory

410D A3 INC DPTR Increment data pointer

410E D8, F5 DJNZ R0, LOOP
Decrement R0, goto label LOOP

till value of R0 becomes 0

becomes zero

4110 80, FE HLT: SJMP HLT Stop

2. Write an ALP to exchange a block of data between two locations.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

4100 78, 0A MOV R0, #0AH Setting count

4102 75, 82, 00

MOV DPL, #00H Setting DPL = 00H

4105 75, 83, 45 LOOP: MOV DPH, #45H Setting DPH = 45H

4108 E0 MOVX A, @DPTR
Moving data from external

memory to accumulator

4109 F9

MOV R1, A Move acc content to R1

410A 75, 83, 50 MOV DPH, #50H Setting DPH = 50H

410D E0 MOVX A, @DPTR
Moving data from external

memory to accumulator

410E C9 XCH A, R1 Exchange A and R1 contents

410F F0 MOVX @DPTR, A
Moving data from

accumulator to external

memory

4110 75, 83, 45 MOV DPH, #45H Setting DPH = 45H

4113 E9 MOV A, R1 Move content of R1 to acc

4114 F0 MOVX @DPTR, A
Moving data from

accumulator to external

memory

4115 A3 INC DPTR Increment data pointer

4116 D8, ED DJNZ R0, LOOP
Decrement R0, goto label

LOOP till R0 becomes 0

becomes zero

4118 80, FE HLT: SJMP HLT Stop

EXPERIMENT 13

ARITHMETIC OPERATIONS : ADDITION, SUBTRACTION,

MULTIPLICATION AND DIVISION

1. Write an ALP to add two 8 bit numbers, sum 16 bits.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

4100 90, 42, 00 MOV DPTR, #4200H
Setting Data pointer to the

operand location

4103 78, 00 MOV R0, #00H
R0 reserved for higher order

byte

4105 E0 MOVX A, @DPTR
Copying first data from external

memory

4106 F9 MOV R1, A Copying the data to R1

4107 A3 INC DPTR Incrementing data pointer

4108 E0 MOVX A, @DPTR
Copying next data from external

memory

4109 29 ADD A, R1 Performing addition

410A 50, 01 JNC SKIP Checking if there is carry after add

410C 08 INC R0
If carry exist, increment R0, else

skip

410D A3 SKIP: INC DPTR Incrementing data pointer

410E F0 MOVX @DPTR, A
Moving the lower order byte of

result to external memory

410F E8 MOV A, R0
Copying higher order byte to

accumulator

4110 A3 INC DPTR Incrementing data pointer

4111 F0 MOVX @DPTR, A
Moving the lower order byte of

result to external memory

4112 80, FE HLT: SJMP HLT Stop

2. Write an ALP to subtract one 8 bit number from another.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

4100 90, 42, 00 MOV DPTR, #4200H
Setting Data pointer to the

operand location

4103 78, 00 MOV R0, #00H
R0 reserved for higher order

byte

4105 E0 MOVX A, @DPTR
Copying first data from external

memory

4106 F9 MOV R1, A Copying the data to R1

4107 A3 INC DPTR Incrementing data pointer

4108 E0 MOVX A, @DPTR
Copying next data from external

memory

4109 C3 CLR C Clearing carry

410A 99 SUBB A, R1 Performing subtraction

410B 50, 04 JNC SKIP Checking if there is borrow

410D 08 INC R0 If borrow exists, incrementing R0

410E F4 CPL A Complement A

410F 24,01 ADD A, #01H
If borrow exist, finding the 2’s

complement of result

4111 A3 SKIP: INC DPTR Incrementing data pointer

4112 F0 MOVX @DPTR, A
Copying magnitude part of result

into external memory

4113 E8 MOV A, R0
Moving the sign flag into

accumulator

4114 A3 INC DPTR Incrementing data pointer

4115 F0 MOVX @DPTR, A
Moving sign flag into external

memory

4116 80, FE HLT: SJMP HLT Stop

3. Write an ALP to multiply two 8 bit numbers, result being a 16 bit number.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

4100 90,45,00 MOV DPTR,#4500H
Loading data pointer with

location of first operand

4103 E0 MOVX A, @DPTR
Copying data from external

memory

4104 F5, F0 MOV B, A
Copying first operand to B

register

4106 A3 INC DPTR
Incrementing data pointer to

access next location

4107 E0 MOVX A, @DPTR
Copying second operand

from external memory

4108 A4 MUL AB Multiplication carried out

4109 A3 INC DPTR
Incrementing data pointer to

store output

410A F0 MOVX @DPTR, A
Storing lower order byte of

result to external memory

410B A3 INC DPTR Incrementing data pointer

4. Write an ALP to perform 8 bit division operation.

410C E5, F0 MOV A, B
Copying higher order data

of result from B register

410E F0 MOVX @DPTR, A
Storing higher order byte of

result to external memory

410F 80, FE HLT: SJMP HLT Stop

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

4100 90,45,00 MOV DPTR, #4500H
Loading data pointer with

location of divisor

4103 E0 MOVX A, @DPTR
Copying divisor from

external memory

4104 F5, F0 MOV B, A
Copying first operand to B

register

4106 A3 INC DPTR
Incrementing data pointer

to access next location

4107 E0 MOVX A, @DPTR
Copying dividend from

external memory

4108 84 DIV AB Division carried out

4109 A3 INC DPTR
Incrementing data pointer

to store output

410A F0 MOVX @DPTR, A
Storing quotient part of

result to external memory

410B A3 INC DPTR Incrementing data pointer

410C E5, F0 MOV A, B
Copying remainder part of

result to B register

410E F0 MOVX @DPTR, A
Storing higher order byte

of result to external

memory

410F 80, FE HLT: SJMP HLT Stop

5. Write an ALP for decimal addition of two 8 bit numbers, sum being a 16 bit

number.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

4100 90, 42, 00 MOV DPTR, #4200H
Setting Data pointer to the

operand location

4103 78, 00 MOV R0, #00H
R0 reserved for higher

order byte

4105 E0 MOVX A, @DPTR
Copying first data from

external memory

4106 F9 MOV R1, A Copying the data to R1

4107 A3 INC DPTR Incrementing data pointer

4108 E0 MOVX A, @DPTR
Copying next data from

external memory

4109 29 ADD A, R1 Performing addition

410A D4 DA A Decimal adjust

410B 50, 01 JNC SKIP
Checking if there is carry

after add

410D 08 INC R0
If carry exist, increment R0,

else skip

410E A3 SKIP: INC DPTR Incrementing data pointer

410F F0 MOVX @DPTR, A
Moving the lower order

byte of result to external

memory

4110 E8 MOV A, R0
Copying higher order byte

to accumulator

4111 A3 INC DPTR Incrementing data pointer

4112 F0 MOVX @DPTR, A
Moving the higher order

byte of result to external

memory

4113 80, FE HLT: SJMP HLT Stop

6. Write an ALP to add a series of 8 bit numbers, sum 16 bits.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

4100 90,45,00
MOV DPTR, #4500H

Setting data pointer to the

operand location

4103 7A,00 MOV R2, #00H Initialise R2

4105 78,0A
MOV R0, #0AH

Initialise count

4107 E0 MOVX A, @DPTR
Copying operand into the

accumulator

4108 18 DEC R0 Decrement R0

4109 F9 BACK: MOV R1, A Move A content to R1

410A A3 INC DPTR Increment DPTR

410B E0 MOVX A, @DPTR
Copying operand into the

accumulator

410C 29 ADD A, R1 Add A and R1 contents

410D 50,01 JNC SKIP Jump on no carry to skip

410F 0A INC R2 Increment R2

4110 D8, F7 SKIP: DJNZ R0, BACK
Decrement R0, goto label

LOOP till value becomes 0

4112 90,50,00 MOV DPTR, #5000H
Setting data pointer to the

result location

4115 F0 MOVX @DPTR, A
Copying result to external

memory

4116 A3 INC DPTR Increment DPTR

4117 EA MOV A, R2 Move R2 to A

4118 F0 MOVX @DPTR, A Store the final carry

4119 80, FE HLT: SJMP HLT Stop

7. Write an ALP to find square of an 8 bit number, result being a 16 bit number.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

4100 90, 42, 00 MOV DPTR, #4200H
Setting data pointer to the

operand location

4103 E0 MOVX A, @DPTR
Copying operand into the

accumulator

4104 F5, F0 MOV B, A
Copying content of accumulator to

B register

4106 A4 MUL AB Performing multiplication

4107 A3 INC DPTR Incrementing data pointer

4108 F0 MOVX @DPTR, A
Copying lower order byte of result

to external memory

4109 E5, F0 MOV A, B
Copying higher order byte of

result to accumulator

410B A3 INC DPTR Incrementing data pointer

410C F0 MOVX @DPTR, A
Copying higher order byte of

result to external memory

410D 80, FE HLT: SJMP HLT Stop

EXPERIMENT 14

IMPLEMENTATION OF BOOLEAN AND LOGICAL INSTRUCTIONS

1. Write an ALP to find the larger of two numbers.

 MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

4100 90,45,00 MOV DPTR,#4500H
Setting initial value of Data

pointer

4103 E0 MOVX A,@DPTR
Obtaining first number from

external memory

4104 F5,F0 MOV B,A First number moved to B reg

4106 A3 INC DPTR Incrementing data pointer

4107 E0 MOVX A,@DPTR
Obtaining second number from

external memory

4108 B5,F0,02 CJNE A,B,LOOP1
Compare and jump if not

equal

410B 80,06 SJMP LOOP2 If equal, jump to LOOP2

410D 40,02 LOOP1: JC LOOP3 If carry, jump to LOOP3

410F F5,F0 MOV B,A Larger number in B

4111 E5,F0 LOOP3: MOV A,B Move the result to ACC

4113 A3 LOOP2: INC DPTR Incrementing data pointer

4114 F0 MOVX @DPTR,A
Result moved to external

memory

4115 80,FE HLT: SJMP HLT Stop

2. Write an ALP to find the smaller of two numbers.

 MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

4100 90,45,00 MOV DPTR,#4500H
Setting initial value of Data

pointer

4103 E0 MOVX A,@DPTR
Obtaining first number from

external memory

4104 F5,F0 MOV B,A First number moved to B reg

4106 A3 INC DPTR Incrementing data pointer

4107 E0 MOVX A,@DPTR
Obtaining second number from

external memory

4108 B5,F0,02 CJNE A,B,LOOP1
Compare and jump if not

equal

410B 80,06 SJMP LOOP2 If equal, jump to LOOP2

410D 50,02 LOOP1: JNC LOOP3 If no carry, jump to LOOP3

410F F5,F0 MOV B,A Larger number in B

4111 E5,F0 LOOP3: MOV A,B Move the result to ACC

4113 A3 LOOP2: INC DPTR Incrementing data pointer

4114 F0 MOVX @DPTR,A
Result moved to external

memory

4115 80,FE HLT: SJMP HLT Stop

3. Write an ALP to find the largest number in an array.

 MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

4100 90,45,00 MOV DPTR,#4500H
Setting initial value of Data

pointer

4103 E0 MOVX A,@DPTR
Obtaining count from

external memory

4104 FD MOV R5, A
Storing the count in register

R5

4105 75, F0,00 MOV B,#00H
Largest number to be stored in

B register

4108 A3 LOOP2: INC DPTR Incrementing data pointer

4109 E0 MOVX A,@DPTR
Moves data into accumulator

from external memory

410A B5,F0,02 CJNE A,B,LOOP1
Compare and jump if not

equal

410D 80,04 SJMP LOOP3 If equal, jump to LOOP3

410F 40, 02 LOOP1: JC LOOP3
If carry from comparison, no

need to update B

4111 F5,F0 MOV B,A Update B

4113 DD,F3 LOOP3: DJNZ R5,LOOP2
Decrement and Jump if not

equal to Zero

4115 90,46,00 MOV DPTR,#4600H
Setting data pointer with

address to store result

4118 E5,F0 MOV A,B
Largest number available in

accumulator

411A F0 MOVX @DPTR,A
Storing the largest number to

external memory

411B 80,FE HLT: SJMP HLT Stop

4. Write an ALP to find the smallest number in an array.

 MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

4100 90,45,00 MOV DPTR,#4500H
Setting initial value of Data

pointer

4103 E0 MOVX A,@DPTR
Obtaining count from

external memory

4104 FD MOV R5, A
Storing the count in register

R5

4105 75,F0,FF MOV B,#0FFH
Smallest number to be stored

in B register

4108 A3 LOOP2: INC DPTR Incrementing data pointer

4109 E0 MOVX A,@DPTR
Moves data into accumulator

from external memory

410A B5,F0,02 CJNE A,B,LOOP1
Compare and jump if not

equal

410D 80,04 SJMP LOOP3 If equal, jump to LOOP3

410F 50, 02 LOOP1: JNC LOOP3
If no carry from comparison,

no need to update B

4111 F5,F0 MOV B,A Update B

4113 DD,F3 LOOP3: DJNZ R5,LOOP2
Decrement and Jump if not

equal to Zero

4115 90, 46,00 MOV DPTR,#4600H
Setting data pointer with

address to store result

4118 E5,F0 MOV A,B
Smallest number available in

accumulator

411A F0 MOVX @DPTR,A
Storing the largest number to

external memory

411B 80,FE HLT: SJMP HLT Stop

5. Write an ALP to sort a given array in ascending order.

 MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

4100 78,05 MOV R0,#05H Setting count in R0

4102 18 DEC R0
Decreasing count by one,

max value of loop variable

4103 E8 LOOP3: MOV A,R0
Copying loop variable to

accumulator

4104 F9 MOV R1,A Copying loop variable to R1

4105 90,45,00 MOV DPTR,#4500H
Setting initial value of Data

pointer

4108 C0,83 LOOP2: PUSH DPH Saving DPH in stack

410A C0,82 PUSH DPL Saving DPL in stack

410C E0 MOVX A,@DPTR One number to acc

410D F5,F0 MOV B,A Number moved to B reg

410F A3 INC DPTR Incrementing data pointer

4110 E0 MOVX A,@DPTR Second no. to accumulator

4111 B5,F0,02 CJNE A,B,LOOP1
Compare and jump if not

equal

4114 80,0B SJMP LOOP Jump if equal to LOOP

4116 50,09 LOOP1: JNC LOOP Jump on no carry to LOOP

4118 D0,82 POP DPL Stack contents to DPL

411A D0,83 POP DPH Stack contents to DPH

411C F0 MOVX @DPTR,A
Acc content to external

memory

411D A3 INC DPTR Updating data pointer

411E E5,F0 MOV A,B Copying B content to acc

4120 F0 MOVX @DPTR,A
Acc content to external

memory

4121 D9,E5 LOOP: DJNZ R1,LOOP2
Decrement and Jump if not

Zero (for comparison)

4123 D8,DE DJNZ R0,LOOP3
Decrement and Jump if not

Zero (for pass)

4125 80,FE HLT: SJMP HLT Stop

6. Write an ALP to sort a given array in descending order.

 MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

4100 78,05 MOV R0,#05H Setting count in R0

4102 18 DEC R0
Decreasing count by one,

max value of loop variable

4103 E8 LOOP3: MOV A,R0
Copying loop variable to

accumulator

4104 F9 MOV R1,A Copying loop variable to R1

4105 90,45,00 MOV DPTR,#4500H
Setting initial value of Data

pointer

4108 C0,83 LOOP2: PUSH DPH Saving DPH in stack

410A C0,82 PUSH DPL Saving DPL in stack

410C E0 MOVX A,@DPTR One number to acc

410D F5,F0 MOV B,A Number moved to B reg

410F A3 INC DPTR Incrementing data pointer

4110 E0 MOVX A,@DPTR Second no. to accumulator

4111 B5,F0,02 CJNE A,B,LOOP1
Compare and jump if not

equal

4114 80,0B SJMP LOOP Jump if equal to LOOP

4116 40,09 LOOP1: JC LOOP Jump on no carry to LOOP

4118 D0,82 POP DPL Stack contents to DPL

411A D0,83 POP DPH Stack contents to DPH

411C F0 MOVX @DPTR,A
Acc content to external

memory

411D A3 INC DPTR Updating data pointer

411E E5,F0 MOV A,B Copying B content to acc

4120 F0 MOVX @DPTR,A
Acc content to external

memory

4121 D9,E5 LOOP: DJNZ R1,LOOP2
Decrement and Jump if not

Zero (for comparison)

4123 D8,DE DJNZ R0,LOOP3
Decrement and Jump if not

Zero (for pass)

4125 80,FE HLT: SJMP HLT Stop

EXPERIMENT 15

COUNTERS: HEXADECIMAL AND BCD COUNTERS

1. Write an ALP for implementing an 8-bit hexadecimal up-counter with a time

delay of 1 second between consecutive numbers.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

4100 75, 50, 00 MOV 50H,#00H
Setting internal ram location

50H with zero

4103 E5, 50 LOOP: MOV A,50H
Copying content of internal ram

location 50H

4105 F5,90 MOV P1,A
Copy content of Accumulator to

port P1

4107 04 INC A Increment content of accumulator

4108 F5,50 MOV 50H,A Update content of location 50H

410A 31, 0E ACALL DELAY Call delay sub routine

410C 80, F5 SJMP LOOP Jump to label “Loop”

410E 79, 03 DELAY: MOV R1,#03H
Start of delay subroutine, setting

content of R1 to 03

4110 90,38,00 L1: MOV DPTR,#3800H Using data pointer as a up counter

4113 A3 L2: INC DPTR Increment data pointer

4114 E5, 83 MOV A,DPH Moving DPH to accumulator

4116 45, 82 ORL A,DPL OR content of DPH and DPL

4118 70, F9 JNZ L2
If result of OR operation is non

zero, jump to label L2

411A D9, F4 DJNZ R1,L1
Decrement R1 and jump if not

zero to L1

411C 22 RET End of delay subroutine

Time delay calculation

Label Mnemonics

Number of

machine cycles per

execution

Number of

executions

Total no of

machine cycles

 MOV R1,#03H 1 1 1

L1: MOV DPTR,#X D 2 3 6

L2: INC DPTR 2 3x (65535-X) 6x (65535-X)

 MOV A,DPH 1 3x (65535-X) 3x (65535-X)

 ORL A,DPL 1 3x (65535-X) 3x (65535-X)

 JNZ L2 2 3x (65535-X) 6x (65535-X)

 DJNZ R1,L1 2 3 6

 RET 2 1 2

 Total number of machine cycles 1179645-18X

Total number of machine cycles = 1179645 – 18X

One machine cycle consists of 12 clock cycles.

Clock Frequency applied to 8051 = 11.0592 MHz

Time delay to be generated =
1179645−18𝑋

11.0592 × 106 × 12=1 second

1179645 – 18X =
11.0592 ×106

12
=921600

X =
1179645−921600

18
= 14335.83 ≅ 14336 𝐷 = 3800 𝐻

2. Write an ALP for implementing an 8-bit hexadecimal down-counter with a time

delay of 1 second between consecutive numbers.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

4100 75, 50, FF MOV 50H,#0FFH
Setting internal ram location

50H with FFH

4103 E5, 50 LOOP: MOV A,50H
Copying content of internal ram

location 50H

4105 F5,90 MOV P1,A
Copy content of Accumulator to

port P1

4107 14 DEC A Decrement content of accumulator

4108 F5,50 MOV 50H,A Update content of location 50H

410A 31, 0E ACALL DELAY Call delay sub routine

410C 80, F5 SJMP LOOP Jump to label “Loop”

410E 79, 03 DELAY: MOV R1,#03H
Start of delay subroutine, setting

content of R1 to 03

4110 90,38,00 L1: MOV DPTR,#3800H Using data pointer as a up counter

4113 A3 L2: INC DPTR Increment data pointer

4114 E5, 83 MOV A,DPH Moving DPH to accumulator

4116 45, 82 ORL A,DPL OR content of DPH and DPL

4118 70, F9 JNZ L2
If result of OR operation is non

zero, jump to label L2

411A D9, F4 DJNZ R1,L1
Decrement R1 and jump if not

zero to L1

411C 22 RET End of delay subroutine

Time delay calculation

Label Mnemonics

Number of

machine cycles per

execution

Number of

executions

Total no of

machine cycles

 MOV R1,#03H 1 1 1

L1: MOV DPTR,#X D 2 3 6

L2: INC DPTR 2 3x (65535-X) 6x (65535-X)

 MOV A,DPH 1 3x (65535-X) 3x (65535-X)

 ORL A,DPL 1 3x (65535-X) 3x (65535-X)

 JNZ L2 2 3x (65535-X) 6x (65535-X)

 DJNZ R1,L1 2 3 6

 RET 2 1 2

 Total number of machine cycles 1179645-18X

Total number of machine cycles = 1179645 – 18X

One machine cycle consists of 12 clock cycles.

Clock Frequency applied to 8051 = 11.0592 MHz

Time delay to be generated =
1179645−18𝑋

11.0592 × 106
× 12=1 second

1179645 – 18X =
11.0592 ×106

12
=921600

X =
1179645−921600

18
= 14335.83 ≅ 14336 𝐷 = 3800 𝐻

3. Write an ALP for implementing an 8-bit BCD up-counter with a time delay of

1 second between consecutive numbers.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

4100 75, 50, 00 MOV 50H,#00H
Setting internal ram location

50H with zero

4103 E5, 50 LOOP: MOV A,50H
Copying content of internal ram

location 50H

4105 F5,90 MOV P1,A
Copy content of Accumulator to

port P1 register

4107 24,01 ADD A,#01H Increment content of accumulator

4109 D4 DA A Decimal adjust accumulator

410A F5,50 MOV 50H,A Update content of location 50H

410C 31, 10 ACALL DELAY Call delay sub routine

410E 80, F3 SJMP LOOP Jump to label “Loop”

4110 79,03 DELAY: MOV R1,#03H
Start of delay subroutine, setting

content of R1 to 03

4112 90,38,00 L1: MOV DPTR,#3800H Using data pointer as a up counter

4115 A3 L2: INC DPTR Increment data pointer

4116 E5, 83 MOV A,DPH Moving DPH to accumulator

4118 45, 82 ORL A,DPL OR content of DPH and DPL

411A 70, F9 JNZ L2
If result of OR operation is non

zero, jump to label L2

411C D9, F4 DJNZ R1,L1
Decrement R1 and jump if not

zero to L1

411E 22 RET End of delay subroutine

Time delay calculation

Label Mnemonics

Number of

machine cycles per

execution

Number of

executions

Total no of

machine cycles

 MOV R1,#03H 1 1 1

L1: MOV DPTR,#X D 2 3 6

L2: INC DPTR 2 3x (65535-X) 6x (65535-X)

 MOV A,DPH 1 3x (65535-X) 3x (65535-X)

 ORL A,DPL 1 3x (65535-X) 3x (65535-X)

 JNZ L2 2 3x (65535-X) 6x (65535-X)

 DJNZ R1,L1 2 3 6

 RET 2 1 2

 Total number of machine cycles 1179645-18X

Total number of machine cycles = 1179645 – 18X

One machine cycle consists of 12 clock cycles.

Clock Frequency applied to 8051 = 11.0592 MHz

Time delay to be generated =
1179645−18𝑋

11.0592 × 106
× 12=1 second

1179645 – 18X =
11.0592 ×106

12
=921600

X =
1179645−921600

18
= 14335.83 ≅ 14336 𝐷 = 3800 𝐻

4. Write an ALP for implementing an 8-bit BCD down-counter with a time delay

of 1 second between consecutive numbers.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

4100 75,50,99 MOV 50H,#99H
Setting internal ram location

50H with 99H

4103 E5, 50 DOWN: MOV A,50H
Copying content of internal

ram location 50H

4105 F5, 90
MOV P1,A

Copy content of Accumulator

to port P1 register

4107 24, 99 ADD A,#99H Adding 99H to accumulator

4109 D4 DA A Decimal adjust accumulator

410A F5, 50 MOV 50H,A Update content of location 50H

410C 31, 10 ACALL DELAY Call delay sub routine

410E 80, F3 SJMP DOWN Jump to label “Loop”

4110 79, 03 DELAY: MOV R1,#03H
Start of delay subroutine,

setting content of R1 to 03

4112 90,38,00 L1: MOV DPTR,#3800H
Using data pointer as a up

counter

4115 A3 L2: INC DPTR Increment data pointer

4116 E5, 83 MOV A,DPH Moving DPH to accumulator

4118 45, 82 ORL A,DPL OR content of DPH and DPL

411A 70, F9 JNZ L2
If result of OR operation is non

zero, jump to label L2

411C D9, F4 DJNZ R1,L1
Decrement R1 and jump if not

zero to L1

411E 22 RET End of delay subroutine

Time delay calculation

Label Mnemonics

Number of

machine cycles per

execution

Number of

executions

Total no of

machine cycles

 MOV R1,#03H 1 1 1

L1: MOV DPTR,#X D 2 3 6

L2: INC DPTR 2 3x (65535-X) 6x (65535-X)

 MOV A,DPH 1 3x (65535-X) 3x (65535-X)

 ORL A,DPL 1 3x (65535-X) 3x (65535-X)

 JNZ L2 2 3x (65535-X) 6x (65535-X)

 DJNZ R1,L1 2 3 6

 RET 2 1 2

 Total number of machine cycles 1179645-18X

Total number of machine cycles = 1179645 – 18X

One machine cycle consists of 12 clock cycles.

Clock Frequency applied to 8051 = 11.0592 MHz

Time delay to be generated =
1179645−18𝑋

11.0592 × 106 × 12=1 second

1179645 – 18X =
11.0592 ×106

12
=921600

X =
1179645−921600

18
= 14335.83 ≅ 14336 𝐷 = 3800 𝐻

