

Department of Electrical Engineering

College of Engineering

Trivandrum

Lab Manual

Microprocessors and Embedded Systems Lab

(2024 scheme)

Department of Electrical Engineering

 College of Engineering Trivandrum

This is a controlled document of the Department of Electrical Engineering of College of

Engineering Trivandrum, Thiruvananthapuram. No part of this can be reproduced in any

form by any means without the prior written permission of the professor and the Head of the

Department of Electrical Engineering, College of Engineering Trivandrum.

Prepared By Verified By Approved By

Dr. Lekshmi Mohan Prof. Vishal M J HOD

VISION

National Level Excellence and International Visibility in Every Facet of Engineering Research

and Education.

MISSION

To facilitate quality transformative education in Engineering and Management.

To foster innovations in Technology and its application for meeting global challenges. To

pursue and disseminate Quality Research. To equip, enrich and transform students to be

responsible professionals for better service to humanity.

DEPARTMENT OF ELECTRICAL ENGINEERING

VISION

Be a centre of excellence and higher learning in Electrical Engineering and allied areas.

MISSION

To impart quality education in Electrical Engineering and bring-up professionally competent

engineers.

To mould ethically sound and socially responsible Electrical Engineers with leadership

qualities.

To inculcate research attitude among students and encourage them to pursue higher studies.

Program Outcomes

PO1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems

PO2 Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

PO3 Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations

PO4 Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis

of the information to provide valid conclusions

PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering

activities with an understanding of the limitations.

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant

to the professional engineering practice.

PO7 Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and

need for sustainable development

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader

in diverse teams, and in multidisciplinary settings

PO10 Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give

and receive clear instructions.

PO11 Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member

and leader in a team, to manage projects and in multidisciplinary environments

PO12 Life-long learning: Recognize the need for, and have the preparation and ability to engage

in independent and life-long learning in the broadest context of technological change

Program Specific Outcomes

PSO1 Apply engineering knowledge to analyse, model, design and operate modern systems for

generation, transmission, distribution and control of electrical power.

PSO2 Design, develop and test modern hardware and software systems for signal processing,

measurement, instrumentation and control applications.

Course Objectives

1. Achieve proficiency in 8085 microprocessor assembly language programming

2. Acquire practical experience with Arduino.

 Course Outcomes (COs)

 At the end of the course students should be able to:

Course Outcome

Bloom’s

Knowledge

Level (KL)

CO1 Develop and execute assembly language programs for solving arithmetic

and logical problems using microprocessor

K4

CO2 Design and Implement systems with interfacing circuits for various

applications

K4

CO3 Execute projects as a team using microprocessor for real life applications. K3

CO4 Design an Arduino based system with the help of various interfacing

devices

K6

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping (Mapping of Course Outcomes with Program Outcomes)

 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2

CO1 3 3 2 3 2 3 2 3 3 2 3

CO2 3 3 2 3 2 3 2 3 3 2 2

CO3 3 3 2 2 2 3 3 3 3 3 2 2

CO4 3 3 3 3 3 3
1:Slight (Low), 2:Moderate(Medium), 3:Substantial (High),-:No Correlation

List of Experiments

Exp.

No
Title

1. Study of Internal Architecture of 8085 Microprocessor and Pin diagram

2. Data Transfer using Different Addressing Modes and Block Transfer

3.
Arithmetic Operations in Binary and BCD: Addition and Subtraction

4. Arithmetic Operations: Multiplication and Division

5. Binary to BCD Conversion and BCD to Binary Conversion

6. Logical Operations

7. Digital I/O using PP1-Square Wave Generation

8. Interfacing D/A Converter : Generation of Simple Waveforms- Triangular, Ramp

9. Familiarization of Arduino IDE

10. Blinking Internal LED of Arduino UNO Module

11. Arduino Based Voltage Measurement

12. Temperature and Humidity Monitoring over ThingSpeak using Arduino UNO

13. Arduino Based DC Current Measurement using Hall Effect Current Sensor

14. Directional Control of the DC Motor using Arduino

15. Interfacing of Relay with Arduino

16. Building Intrusion Detection System with Arduino and Ultrasonic Sensor

EXPERIMENT 1

STUDY OF INTERNAL ARCHITECTURE OF 8085

MICROPROCESSOR AND PIN DIAGRAM

A microprocessor is a multipurpose, programmable logic device that reads binary instructions

from a storage device called memory, accepts binary data as input and processes data according

to those instructions and provides result as output. It includes an Arithmetic / Logic unit (ALU),

a control unit and an array of registers as a small internal memory for holding data while it is

being manipulated or processed. It is a general-purpose device which may be used for different

purposes in different applications. Configuration of the system is flexible.

INTERNAL ARCHITECTURE

ALU

The Arithmetic and logic unit (ALU) performs various arithmetic and logic operations like

Addition, Subtraction, Logical AND, Logical OR, Logical exclusive OR, complement (Logical

NOT), Increment (Add 1), Decrement (Subtract 1), Left shift (add input to itself) and clear

(result is zero).

REGISTERS

Registers are small memories within the CPU. They are used by the microprocessor for

temporary storage and manipulation of data and instructions. Data remain in the registers till

they are sent to the memory or I/O devices.

Registers of 8085 are

• One 8-bit accumulator (ACC) ie, register A.

• Six 8-bit general purpose registers – B, C, D, E, H and L.

• One 16-bit program counter – PC.

• Instruction register – IR.

• Status register – Flag register

• One 16-bit Stack Pointer – SP.

• Temporary register – W and Z.

ACCUMULATOR

The accumulator, one of the most important 8 - bit registers of 8085, is mainly used for

arithmetic, logic and rotate operations. The primary purpose of this register is to store

temporary data and for the placement of final values of arithmetic and logic operations. It holds

one of the operands.

GENERAL PURPOSE REGISTER

There are 6 general purpose registers in the 8085 processor, i.e. B, C, D, E, H& L. Each register

can hold 8-bit data. These registers can work in pairs to hold 16-bit data and their pairing

combination is like B-C, D-E & H-L. The H-L pair works as a memory pointer.

FLAG REGISTERS

The flag register is a group of flip-flops used to give the status of the result of different

operations. The flag register in 8085 is an 8–bit register which contains 5 bit positions. These

five flags are 1-bit F/F and are known as sign, zero, auxiliary carry, parity and carry.

CY - Carry flag, it is set when carry is generated and otherwise, it is reset.

Z – Zero flag is set if the result of an operation is zero otherwise it is reset.

S – Sign flag, Signed number is negative if S = 1 and positive if S = 0.

P – Parity flag, it is set for even parity and reset for odd parity.

AC - Auxiliary Carry flag is used for BCD operations. It is set when a carry is generated

by digit D3 and passed to D4.

TEMPORARY REGISTER

There are 2 temporary registers, W and Z. It is also called operand register (8-bit). 8085 uses

them internally to hold data temporarily during the execution of some instructions.

SPECIAL PURPOSE REGISTERS

It consists of three 16 bit registers – Program counter, Stack pointer, Incrementer / Decrementer

Latch.

PROGRAM COUNTER

It holds the address of the next instruction to be executed to save time.

STACK POINTER

Stack is a portion of memory (RAM), that works in the LIFO concept. The stack pointer

maintains the address of the last byte that is entered into the stack. Each time when the data is

loaded into the stack, the Stack pointer gets decremented.

INCR/ DECR LATCH

It is used to increment or decrement the content of program counter and stack pointer register.

ADDRESS / DATA BUFFER and ADDRESS BUFFER

The contents of the stack pointer and program counter are loaded into the address buffer and

address – data buffer. These buffers are then used to drive the external address bus and address–

data bus. As the memory and I/O chips are connected to these buses, the CPU can exchange

desired data to memory and I/O chips. The address data buffer can both send and receive data

from internal data bus.

CONTROL UNIT

It performs data transfer and decision-making operations.

It consists of :

• Instruction Register

• Instruction Decoder

• Timing and Control unit

INSTRUCTION REGISTER

When an instruction like adding two data, moving a data, copying a data etc is fetched from

memory, it is directed to the instruction register. So instruction registers are specifically to store

the instructions that are fetched from memory.

INSTRUCTION DECODER

It decodes the information present in the instruction register for further processing. It then sends

the decoded information to the timing and control unit.

TIMING AND CONTROL UNIT

It synchronizes the registers and flow of data through various registers and other units. This

unit consists of an oscillator and sends control signals needed for internal and external control

of data and other units. The oscillator generates clock signals.

Signals that are associated with this unit are:

• Control signals: READY, 𝑅𝐷̅̅ ̅̅ , 𝑊𝑅̅̅ ̅̅ ̅, ALE

• Status signals: S0, S1, IO/𝑀̅

• DMA signals: HOLD, HLDA

• Reset signals: 𝑅𝐸𝑆𝐸𝑇𝐼𝑁̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ , RESET OUT

CONTROL AND STATUS SIGNALS

• RD – Read (active low) – Indicate that I/O or memory selected is to be read and data

are available on the bus.

• WR – Write (active low) – Indicate that data available on the bus are to be written to

memory or I/O ports.

• IO/𝑀̅ - Differentiate I/O operation or memory operations.

0 – indicates a memory operation

 1 – indicates an I/O operation

• S1 and S0 – Status signals, tells current operation.

INTERRUPT CONTROLLER

Interrupt signals present in 8085 are:

1. INTR

2. TRAP

3. RST 7.5

4. RST 6.5

5. RST 5.5

Whenever the interrupt signal is enabled or requested, the microprocessor shifts the control

from the main program to process the incoming request. After the request is completed, the

control goes back to the main program.

SERIAL I/O CONTROL

The input and output of serial data can be carried out using two instructions in 8085:

1. SID - Serial input data

2. SOD - Serial output data

Data on these line is accepted or transferred under software control by serial I/O control block,

by using special instructions RIM & SIM.

8085 PIN DIAGRAM

8085 is an 8–bit, NMOS microprocessor. It is available as a 40-pin IC package fabricated on a

single LSI chip. It uses a single +5V DC supply for its operation. 8085 microprocessor has a

clock speed of about 3 MHz and the clock cycle is of 320ns. It has about 6500 transistors. It

has 80 basic instructions and 246 opcodes. It consists of three main sections, arithmetic and

logic unit, timing and control unit and several registers.

A8-A15 (Output):-

These are address bus and used for the most significant bits of memory address.

AD0-AD7 (Input/Output):-

These are time-multiplexed address data bus. These are used for the least significant 8 bits of

the memory address during first clock cycle and then for data during the second and third clock

cycle.

ALE (Address Latch Enable):-

It goes high during the 1st clock cycle of a machine. It enables the lower 8 bits of address to

be latched either in the memory or external latch.

IO/M:-

It is status signal, when it goes high; the address on address bus is for I/O device, otherwise

for memory.

S0, S1:-

These are status signals to distinguish various types of operation.

S1 S0 Operations

0 0 Halt

0 1 Write

1 0 Read

1 1 Opcode Fetch

RD (output):-

It is used to control read operation.

WR (output):-

It is used to control write operation.

HOLD (input):-

It is used to indicate that another device is requesting the use of the address & data bus.

HLDA (output):-

It is an acknowledgement signal used to indicate HOLD request has been received.

INTR (input):-

When it goes high, the microprocessor suspends its normal sequence of operations.

INTA (output):-

It is an interrupt acknowledgement signal sent by the microprocessor after INTR is received.

RST 5.5, 6.5, 7.5 and TRAP:-

These are various interrupt signals. Among them, TRAP is having highest priority.

RESET IN (input):-

It resets the PC to zero.

RESET OUT(output):-

It indicates that the CPU is being reset.

X1, X2 (input):-

This circuitry is required to produce a suitable clock for the operation of microprocessor. .

Clk (output):-

It is clock output for the user. Its frequency is the same at which the processor operates.

SID (input):-

It is used for data line for serial input.

SOD (output):-

It is used for data line for serial output.

Vcc:-

+5 volts supply.

Vss:-

Ground reference.

8085MICROPROCESSOR TRAINER KIT M85-03

M85-03 kit is a single-board Microprocessor training kit based on 8085 microprocessor.

It provides monitor EPROM and user’s RAM with battery backup. The kit has 28 keys

hexadecimal keyboard and six digit seven segment displays for display. The kit also has

the capability of interacting with a PC through an RS-232C serial link. The Input/Output

structure of M85-03 provides 48 programmable I/O lines using 8255.

PROCEDURE

EXMEM(Examine memory) keyboard command is used to examine the memory locations.

To examine the contents of the location for 2500 and 2501, the following key

sequence has to be used.

RESET→EXMEM→2500→NEXT→2501

To enter the program

RESET→ EXMEM→ Enter Starting address of program → NEXT → Enter the

machine code → NEXT

To execute the program

RESET →GO→ Starting address of program→. (Dot)(Fill Key)

To check the result

RESET→EXMEM→ Enter the address of the result location

To check the register content

Shift → EXREG → A/ B/C/D/E/H/L

EXPERIMENT 2

DATA TRANSFER USING DIFFERENT ADDRESSING MODES AND

BLOCK TRANSFER

1. Write an ALP for loading registers A, B, C, D, E, H and L with single-byte data

using immediate addressing and observe the register contents.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 3E, 01 START: MVI A,01H Load A with 01

2002 06, 02 MVI B,02H Load B with 02

2004 0E, 03 MVI C,03H Load C with 03

2006 16, 04 MVI D,04H Load D with 04

2008 1E, 05 MVI E,05H Load E with 05

200A 26, 06 MVI H,06H Load H with 06

200C 2E, 07 MVI L,07H Load L with 07

200E EF END: RST 05
Return to monitor

program

2. Write an ALP for loading registers B, C, D, E, H and L with t h e same data

using register addressing and observe the register contents.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 3A, 50, 20 START: LDA 2050H
Load accumulator

with content of 2050

2003 47 MOV B, A
Move the content

of A to B

2004 4F MOV C, A
Move the content

of A to C

2005 57 MOV D, A
Move the content

of A to D

2006 5F MOV E, A
Move the content

of A to E

2007 67 MOV H, A
Move the content

of A to H

2008 6F MOV L, A
Move the content

of A to L

2009 EF END: RST 05
Return to monitor

program

3. Write an ALP for loading register pairs BC, DE and HL with 16-bit data using

immediate addressing and observe the register pair contents.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 01, 50, 21 START: LXI B, 2150H
Load BC register pair with

data 2150

2003 11, 51, 21 LXI D, 2151H
Load DE register pair with

data 2151

2006 21, 52, 21 LXI H, 2152H
Load HL register pair with

data 2152

2009 EF END: RST 05 Return to monitor program

4. Write an ALP to copy a block of 8-bit data from 4 memory locations (2250-2253) to

another 4 memory locations (2254-2257) using direct addressing.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 3A, 50, 22 START: LDA 2250H
Load data in 2250

to accumulator

2003 32, 54, 22 STA 2254H
Accumulator content

stored in 2254

2006 3A, 51, 22 LDA 2251H
Load data in 2251

to accumulator

2009 32, 55, 22 STA 2255H
Accumulator data

stored in 2255

200C 3A, 52, 22 LDA 2252H
Load data in 2252

to accumulator

200F 32, 56, 22 STA 2256H
Accumulator data

stored in 2256

2012 3A, 53, 22 LDA 2253H
Load data in 2253

to accumulator

2015 32, 57, 22 STA 2257H
Accumulator data

stored in 2257

2018 EF END: RST 05
Return to monitor

program

5. Write an ALP to copy a block of 8-bit data from 4 memory locations (2250-2253) to

another 4 memory locations (2254-2257) using 16-bit data transfer addressing mode

direct addressing.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 2A, 50, 22 START: LHLD 2250H
Data in 2250 to L register

and data in 2251 to H

register
2003 22, 54, 22 SHLD 2254H

L register content to 2254

and H content to 2255

2055
2006 2A, 52, 22 LHLD 2252H

Data in 2252 to L register

and data in 2253 to H

register
2009 22, 56, 22 SHLD 2256H

L register content to 2256

and H content to 2257

2057
200C EF END: RST 05

Return to

monitor program

6. Write an ALP to transfer a block of 8-bit data from 4 memory locations (2250-2253) to

another 4 memory locations (2254-2257) using indirect addressing.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 21, 50, 22 START: LXI H, 2250H
Set up HL as a pointer of

source.

2003 11, 54, 22 LXI D, 2254H
Set up DE as a pointer of

destination

2006 06, 04 MVI B, 04 Set up the counter

2008 7E LOOP: MOV A, M
Get data from source to

accumulator

2009 12 STAX D Store data in destination

200A 23 INX H
Pointer to next source

location

200B 13 INX D
Pointer to next destination

location

200C 05 DCR B Decrement counter

200D C2, 08, 20 JNZ LOOP
If the transfer is not over,

continue

2010 EF END: RST 05 Return to monitor program

EXPERIMENT 3

ARITHMETIC OPERATIONS IN BINARY AND BCD: ADDITION AND

SUBTRACTION

1. Write an ALP to add two 8-bit numbers, sum 8 bits.

MEMORY
ADDRESS

MACHINE
CODE

LABEL MNEMONICS COMMENTS

2000 21, 00, 25 START: LXI H,2500H Initialize memory pointer

2003 7E MOV A, M
Load the first operand from

memory to register A

2004 23 INX H
Increment content of H-L
pair

2005 46 MOV B, M
Load the second operand

from memory to register B

2006 80 ADD B Add 1st and 2nd numbers

2007 23 INX H Pointer to store the result

2008 77 MOV M, A
Store result to
memory

2009 EF END: RST 05 Return to Monitor program

2. Write an ALP to add two 8-bit numbers, sum 16 bits.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 21, 01, 25 START: LXI H, 2501H
Address of 1st number in

H-L pair.

2003 7E MOV A, M
1st number in

accumulator.

2004 23 INX H
Address of 2nd number

2502 in H-L pair.

2005 46 MOV B, M

Load the second operand

from memory to register

B

2006 0E, 00 MVI C, 00H

MSBs of sum in register

C.

Initial value = 00.

2008 80 ADD B 1st number + 2nd number.

2009 D2, 0D, 20 JNC AHEAD
Is carry? No, go to the

label AHEAD.

200C 0C INR C Yes, increment C.

200D 23 AHEAD: INX H
Increment content of H-
L pair

200E 77 MOV M, A
Move the result from A
to memory.

200F 23 INX H
Increment content of H-
L pair.

2010 71 MOV M, C
Move the result from C to
memory.

2011 EF END: RST 05
Return to
Monitor program

3.Write an ALP to add two16 bit numbers, sum 16 bits or more.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 2A, 01, 25 START: LHLD 2501H
1st 16-bit number in H-L

pair.

2003 EB XCHG
Get 1st number in D-E

pair.

2004 2A, 03, 25 LHLD 2503H
2nd 16-bit number in H-L

pair.

2007 0E, 00 MVI C, 00H
MSBs of sum in register

C. Initial value = 00.

2009 19 DAD D 1st number + 2nd number.

200A D2, 0E, 20 JNC AHEAD
Is carry? No, go to the

label AHEAD.

200D 0C INR C Yes, increment C.

200E 22, 05, 25 AHEAD: SHLD 2505 H
Store LSBs of sum in 2505

and 2506 H.

2011 79 MOV A, C
MSBs of sum in

accumulator

2012 32, 07,25 STA 2507H MSBs of sum in 2507 H.

2015 EF END: RST 05
Return to Monitor
program

4. Write an ALP to subtract two 8-bit numbers, difference 8 bits.

MEMORY
ADDRESS

MACHINE
CODE

LABEL MNEMONICS COMMENTS

2000 21, 00, 25 START: LXI H,2500H Initialize memory pointer

2003 7E MOV A, M
Load the first operand from

memory to register A

2004 23 INX H
Increment content of H-L
pair

2005 46 MOV B, M
Load the second operand

from memory to register B

2006 90 SUB B
Subtract 2nd number from
1st number

2007 23 INX H Pointer to store the result

2008 77 MOV M, A
Store result to
memory

2009 EF END: RST 05 Return to Monitor program

5. Write an ALP for the decimal addition of two 8-bit numbers, sum 16 bits.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 21, 01, 25 START: LXI H, 2501H
Address of 1st number in

H-L pair.

2003 7E MOV A, M
1st number in

accumulator.

2004 23 INX H
Address of 2nd number

2502 in H-L pair.

2005 46 MOV B, M

Load the second operand

from memory to register

B

2006 0E, 00 MVI C, 00H

MSBs of sum in register

C.

Initial value = 00.

2008 80 ADD B 1st number + 2nd number.

2009 27 DAA Decimal adjust

200A D2, 0E, 20 JNC AHEAD
Is carry? No, go to the

label AHEAD.

200D 0C INR C Yes, increment C.

200E 23 AHEAD: INX H
Increment content of H-
L pair

200F 77 MOV M, A
Move the result from A
to memory.

2010 23 INX H
Increment content of H-
L pair.

2011 71 MOV M, C
Move the result from C to
memory.

2012 EF END: RST 05
Return to
Monitor program

6. Write an ALP to add a series of 8-bit numbers, sum 16 bits.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 21, 00, 25 START: LXI H, 2500H
Load the address of count

to HL pair

2003 4E MOV C, M
Load C with the count

value.

2004 3E, 00 MVI A, 00H
LSBs of sum = 00 (initial

value)

2006 47 MOV B, A
MSBs of sum = 00 (initial

value)

2007 23 LOOP: INX H Point to next location.

2008 86 ADD M
Add memory content with

accumulator.

2009 D2, 0D, 20 JNC AHEAD
When carry flag is 0, skip

next task.

200C 04 INR B
Yes, add carry to MSBs of

sum.

200D 0D AHEAD: DCR C Decrement C register by 1.

200E C2, 07, 20 JNZ LOOP
When Zero flag is not set,

go to Loop.

2011 32, 50, 24 STA 2450H
Store LSBs of the sum in

2450 H.

2014 78 MOV A, B
Get MSBs of sum in

accumulator.

2015 32, 51, 24 STA 2451H
Store MSBs of the sum in

2451 H.

2018 EF END: RST 05
Return to
Monitor program

7. Write an ALP to add a series of 8-bit decimal numbers, sum 16 bits.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 21, 00, 25 START: LXI H, 2500H
Load the address of count

to HL pair

2003 4E MOV C, M
Load C with the count

value.

2004 3E, 00 MVI A, 00H
LSBs of sum = 00 (initial

value)

2006 47 MOV B, A
MSBs of sum = 00 (initial

value)

2007 23 LOOP: INX H Point to next location.

2008 86 ADD M
Add memory content with

accumulator.

2009 27 DAA Decimal adjust

200A D2, 0E, 20 JNC AHEAD
When carry flag is 0, skip

next task.

200D 04 INR B
Yes, add carry to MSBs of

sum.

200E 0D AHEAD: DCR C Decrement C register by 1.

200F C2, 07, 20 JNZ LOOP
When Zero flag is not set,

go to Loop.

2012 32, 50, 24 STA 2450H
Store LSBs of the sum in

2450 H.

2015 78 MOV A, B
Get MSBs of sum in

accumulator.

2016 32, 51, 24 STA 2451H
Store MSBs of the sum in

2451 H.

2019 EF END: RST 05
Return to
Monitor program

8. Write an ALP to shift an 8-bit number left by 1 bit.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 3A, 01, 25 START: LDA 2501H Get data in accumulator.

2003 87 ADD A Shift it left by one bit.

2004 32, 02, 25 STA 2502H Store result in 2502 H

2007 EF END: RST 05 Return to monitor program

9. Write an ALP to shift an 8-bit number left by 2 bits.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 3A, 01, 25 START: LDA 2501H Get data in accumulator.

2003 87 ADD A Shift it left by one bit.

2004 87 ADD A
Shift it left again by one

bit.

2005 32, 02, 25 STA 2502H Store result in 2502 H

2008 EF END: RST 05 Return to monitor program

10. Write an ALP to shift a 16-bit number left by 1 bit.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 2A, 01, 25 START: LHLD 2501H Get 16 bit data in HL pair.

2003 29 DAD H Shift it left by one bit.

2004 22, 03, 25 SHLD 2503H
Store the result in 2503

and 2504 H.

2007 EF END: RST 05 Return to monitor program

11. Write an ALP to shift a 16-bit number left by 2 bits.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 2A, 01, 25 START: LHLD 2501H Get 16 bit data in HL pair.

2003 29 DAD H Shift it left by one bit.

2004 29 DAD H
Shift it left again by one

bit.

2005 22, 03, 25 SHLD 2503H
Store the result in 2503

and 2504 H.

2008 EF END: RST 05 Return to monitor program

EXPERIMENT 4

ARITHMETIC OPERATIONS: MULTIPLICATION AND DIVISION

1. Write an ALP to multiply two 8-bit numbers stored at locations 2500H and 2501H and

the product is stored at 2502H and 2503H.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 21, 00, 25 START: LXI H, 2500H
Load H-L pair with address

2500H

2003 46 MOV B, M
Get the first number in the B

register

2004 23 INX H Increment H-L pair

2005 4E MOV C, M
Get the second number in the C

register

2006 3E, 00 MVI A, 00H Initialise accumulator with 00H

2008 16, 00 MVI D,00H Initialise D register with 00H

200A 80 LOOP: ADD B
Add content of Accumulator to

register B.

200B D2, 0F, 20 JNC AHEAD Jump on no carry to AHEAD

200E 14 INR D
Increment D register if carry

present

200F 0D AHEAD: DCR C Decrement content of register C

2010 C2, 0A, 20 JNZ LOOP Jump on not zero to LOOP

2013 23 INX H Increment H-L pair

2014 77 MOV M, A
Move the result from accumulator

to memory location 2502H

2015 23 INX H Increment H-L pair

2016 72 MOV M, D
Move the carry from D register to

memory location 2503H

2017 EF END: RST 05 Return to monitor program

2. Write an ALP to multiply a 16-bit number by an 8-bit number. Multiplicand is stored

at locations 2100H and 2101H and the multiplier is in 2102H. The product is to be

stored at 2103H and 2104H.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 21, 02, 21 START: LXI H, 2102H
Initialize memory pointer with

2102H

2003 46 MOV B, M Load multiplier in B register

2004 11, 00, 00 LXI D, 0000H Initialise the DE pair with 0000H

2007 2A, 00, 21 LHLD 2100H Load multiplicand in H-L pair

200A EB XCHG Exchange DE with HL pair

200B 19 BACK: DAD D Add DE and HL contents

200C 05 DCR B Decrement register B

200D C2, 0B, 20 JNZ BACK If not zero, go to BACK

2010 22, 03, 21 SHLD 2103H
Store the product in HL pair to

2103H and 2104H

2013 EF END: RST 05 Return to monitor program

3. Write an ALP for binary division. The 8-bit divisor and dividend are stored at memory

locations 2100H and 2101H respectively. The remainder and quotient should be stored

at 2102H and 2103H respectively.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 21, 00, 21 START: LXI H, 2100H
Initialize HL pair as memory

pointer

2003 46 MOV B, M Load divisor in B register

2004 23 INX H Increment HL pair

2005 7E MOV A, M Load dividend to accumulator

2006 23 INX H Increment HL pair

2007 0E, 00 MVI C, 00H Initialize quotient as 00H

2009 B8 CMP B Is dividend less than divisor?

200A DA, 13, 20 JC AHEAD If yes, jump to AHEAD

200D 90 BACK: SUB B Subtract divisor from dividend

200E 0C INR C Increment C register

200F B8 CMP B Is dividend less than divisor

2010 D2, 0D, 20 JNC BACK If no carry, jump to BACK

2013 77 AHEAD: MOV M, A Store remainder at 2102H

2014 23 INX H Increment HL pair

2015 71 MOV M, C Store quotient at 2103H

2016 EF END RST 05 Return to monitor program

EXPERIMENT 5

BINARY TO BCD CONVERSION AND BCD TO BINARY CONVERSION

1. Write an ALP to convert BCD to Binary

MEMORY
ADDRESS

MACHINE
CODE

LABEL MNEMONICS COMMENTS

2000 3A, 00, 25 START: LDA 2500H
Load accumulator with content
of address 2500H

2003 47 MOV B, A
Move data from accumulator to
reg. B

2004 E6, F0 ANI F0H
AND F0 with accumulator
content

2006 0F RRC
Rotate accumulator content
right by 1 bit

2007 0F RRC
Rotate accumulator content
right by 1 bit

2008 0F RRC
Rotate accumulator content
right by 1 bit

2009 0F RRC
Rotate accumulator content
right by 1 bit

200A 57 MOV D, A
Move data from accumulator to
reg. D

200B 0E, 0A MVI C, 0AH Initialise C register with 0AH

200D 97 SUB A
Subtract A from A (clearing
accumulator)

200E 82 BACK: ADD D Add D with A

200F 0D DCR C Decrement C register

2010 C2, 0E, 20 JNZ BACK Jump if not zero to BACK

2013 57 MOV D, A
Move data from accumulator to
reg D

2014 78 MOV A, B
Move data from reg B to
accumulator

2015 E6, 0F ANI 0FH
AND 0F with accumulator
content

2017 82 ADD D Add D with A

2018 32, 01, 25 STA 2501H
Store accumulator content in
2501H

201B EF END: RST 05 Return to monitor program

2. Write an ALP to convert Binary to BCD

MEMORY
ADDRESS

MACHINE
CODE

LABEL MNEMONICS COMMENTS

2000 16,00 START: MVI D, 00H Initialise D with 00H

2002 1E,00 MVI E, 00H Initialise E with 00H

2004 21, 00, 24 LXI H, 2400H
Load H-L pair with address
2400H

2007 7E MOV A, M
Move data from memory to
accumulator

2008 FE, 64 HUND: CPI 64H
Compare data in accumulator
with 64H

200A DA 13, 20 JC TEN Jump on carry to label TEN

200D 1C INR E Increment E register

200E D6, 64 SUI 64H Subtract 64H from accumulator

2010 C3, 08, 20 JMP HUND Jump to label HUND

2013 FE, 0A TEN: CPI 0AH
Compare data in accumulator
with 0AH

2015 DA, 1E, 20 JC UNIT Jump if carry to label UNIT

2018 14 INR D Increment D register

2019 D6, 0A SUI 0AH Subtract 0AH from accumulator

201B C3, 13, 20 JMP TEN Jump to label TEN

201E 23 UNIT: INX H Increment H-L pair

201F 73 MOV M,E
Move data from reg. E to
memory

2020 4F MOV C,A
Move data from accumulator
to reg. C

2021 7A MOV A,D
Move data from reg. D to
accumulator

2022 07 RLC
Rotate accumulator content left
by 1 bit

2023 07 RLC
Rotate accumulator content left
by 1 bit

2024 07 RLC
Rotate accumulator content left
by 1 bit

2025 07 RLC
Rotate accumulator content left
by 1 bit

2026 81 ADD C Add C with A

2027 23 INX H Increment H-L pair

2028 77 MOV M, A
Move data from accumulator
to memory

2029 EF END: RST 05 Return to monitor program

EXPERIMENT 6

LOGICAL OPERATIONS

1. Write an ALP to find the larger of two numbers.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 21, 01, 25 START: LXI H, 2501H Address of 1st number in H-L pair.

2003 7E MOV A, M 1st number in accumulator.

2004 23 INX H
Address of 2nd number in H-L

pair.

2005 BE CMP M
Compare 2nd number with 1st

number. Is the 2nd number >1st ?

2006 D2, 0A, 20 JNC AHEAD
No, larger number is in

accumulator. Go to AHEAD.

2009 7E MOV A, M
Yes, get 2nd number in

accumulator.

200A 32, 03, 25 AHEAD: STA 2503H Store larger number in 2503H.

200D EF END: RST 05 Return to monitor program

2. Write an ALP to find the smaller of two numbers.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 21, 01, 25 START: LXI H, 2501H Address of 1st number in H-L pair.

2003 7E MOV A, M 1st number in accumulator.

2004 23 INX H
Address of 2nd number in H-L

pair.

2005 BE CMP M
Compare 2nd number with 1st

number. Is the 2nd number >1st ?

2006 DA, 0A, 20 JC AHEAD
Yes, smaller number is in

accumulator. Go to AHEAD.

2009 7E MOV A, M
No, get 2nd number in

accumulator.

200A 32, 04, 25 AHEAD: STA 2504H Store smaller number in 2504H.

200D EF END: RST 05 Return to monitor program

3. Write an ALP to find the largest number in an array of 8-bit numbers.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 21, 00, 25 START: LXI H, 2500H Address for count in H-L pair.

2003 4E MOV C, M Count in register C.

2004 23 INX H Address of 1st number in H-L pair.

2005 7E MOV A, M 1st number in accumulator.

2006 0D DCR C Decrement count.

2007 23 LOOP: INX H Address of next number.

2008 BE CMP M
Compare next no. with previous

maximum. Is next no. > previous?

2009 D2, 0D, 20 JNC AHEAD
No, larger number is in accumulator.

Go to the label AHEAD.

200C 7E MOV A, M
Yes, get larger number in

accumulator.

200D 0D AHEAD: DCR C Decrement count.

200E C2, 07, 20 JNZ LOOP Jump if not zero.

2011 32, 50, 24 STA 2450H Store result in 2450H.

2014 EF END: RST 05 Return to monitor program

4. Write an ALP to find the smallest number in an array of 8-bit numbers.

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 21, 00, 25 START: LXI H, 2500H Address for count in H-L pair.

2003 4E MOV C, M Count in register C.

2004 23 INX H Address of 1st number in H-L pair.

2005 7E MOV A, M 1st number in accumulator.

2006 0D DCR C Decrement count.

2007 23 LOOP: INX H Address of next number.

2008 BE CMP M
Compare next no. with previous

maximum. Is next no. > previous?

2009 DA, 0D, 20 JC AHEAD
Yes, smaller number is in accumulator.

Go to the label AHEAD.

200C 7E MOV A, M
No, get smaller number in

accumulator.

200D 0D AHEAD: DCR C Decrement count.

200E C2, 07, 20 JNZ LOOP Jump if not zero.

2011 32, 51, 24 STA 2451H Store result in 2451H.

2014 EF END: RST 05 Return to monitor program

5. Write an ALP to sort an array of 8-bit numbers in the descending order.

MEMORY

ADDRESS

MACHINE

CODES
LABEL MNEMONICS COMMENTS

2000 21, 00, 26 START: LXI H, 2600H Set pointer for array.

2003 4E MOV C, M Load the Count.

2004 0D DCR C Decrement Count.

2005 51 REPEAT: MOV D, C
Count the number of Comparisons

in register D.

2006 21, 01, 26 LXI H, 2601H
Load starting address of data

array.

2009 7E LOOP: MOV A, M
Copy content of memory location

to Accumulator.

200A 23 INX H Increment content of HL pair

200B BE CMP M
Compare the number with next

number.

200C D2, 14, 20 JNC SKIP
Jump to skip if carry not

generated.

200F 46 MOV B, M
Copy content of memory location

to B Register.

2010 77 MOV M, A
Copy content of Accumulator to

memory location.

2011 2B DCX H Decrement content of HL pair

2012 70 MOV M, B
Copy content of B Register to

memory location.

2013 23 INX H Increment content of HL pair

2014 15 SKIP: DCR D Decrement D register

2015 C2, 09, 20 JNZ LOOP Jump to LOOP if not Zero.

2018 0D DCR C Decrement C register

2019 C2, 05, 20 JNZ REPEAT Jump to REPEAT if not Zero.

201C EF END: RST 05 Return to monitor program

6. Write an ALP to sort an array of 8-bit numbers in the ascending order.

MEMORY

ADDRESS

MACHINE

CODES
LABEL MNEMONICS COMMENTS

2000 21, 00, 26 START: LXI H, 2600H Set pointer for array.

2003 4E MOV C, M Load the Count.

2004 0D DCR C Decrement Count.

2005 51 REPEAT: MOV D, C
Count the number of Comparisons

in register D.

2006 21, 01, 26 LXI H, 2601H
Load starting address of data

array.

2009 7E LOOP: MOV A, M
Copy content of memory location

to Accumulator.

200A 23 INX H Increment content of HL pair

200B BE CMP M
Compare the number with next

number.

200C DA, 14, 20 JC SKIP Jump to skip if carry generated.

200F 46 MOV B, M
Copy content of memory location

to B Register.

2010 77 MOV M, A
Copy content of Accumulator to

memory location.

2011 2B DCX H Decrement content of HL pair

2012 70 MOV M, B
Copy content of B Register to

memory location.

2013 23 INX H Increment content of HL pair

2014 15 SKIP: DCR D Decrement D register

2015 C2, 09, 20 JNZ LOOP Jump to LOOP if not Zero.

2018 0D DCR C Decrement C register

2019 C2, 05, 20 JNZ REPEAT Jump to REPEAT if not Zero.

201C EF END: RST 05 Return to monitor program

EXPERIMENT 7

DIGITAL I/O USING PPI- SQUARE WAVE GENERATION

Aim

To generate a pulse train of frequency 200 Hz and duty cycle 50%.

Theory

Waveform generation using microprocessor requires input-output ports interfaced to it.

Programmable peripheral interface (PPI) 8255 is a general purpose programmable I/O

device designed to interface the CPU with its outside world such as ADC, DAC, keyboard

etc. IC 8255 provides 3 nos. of 8-bit ports (Port A, Port B and Port C). IC 8255 needs to

be initialized before use. Initialization includes setting mode of 8255 (Input-Output or

Bit Set Reset) and data direction in case of IO mode (Input or Output) for individual ports.

In this case, 8255 is setup in I/O mode with all ports as output ports. So the initialization

control word is 80H.

The data send out from microprocessor to 8255 may be directed to Port A, B, C or Control

Word Register (CWR). Each register mentioned above is given an 8-bit address.

I/O address range

Port A = 00H; Port B = 01H; Port C = 02H; Control word Register CWR = 03H

To initialize the 8255, load control word (80H) in Accumulator and send it to CWR

(03H)

8255-I CONNECTOR-CN4

PIN SIGNALS PIN SIGNALS

1 P1C4 14 P1B1

2 P1C5 15 P1A6

3 P1C2 16 P1A7

4 P1C3 17 P1A4

5 P1C0 18 P1A5

6 P1C1 19 P1A2

7 P1B6 20 P1A3

8 P1B7 21 P1A0

9 P1B4 22 P1A1

10 P1B5 23 P1C6

11 P1B2 24 P1C7

12 P1B3 25 GND

13 P1B0 26 VCC

• PA0 – PA7 – Pins of port A

• PB0 – PB7 – Pins of port B

• PC0 – PC7 – Pins of port C

• D0 – D7 – Data pins for the transfer of data

• RESET – Reset input

• RD’ – Read input

• WR’ – Write input

• CS’ – Chip select

• A1 and A0 – Address pins

Algorithm- Square Wave Waveform

Delay Calculation

 The delay time required for frequency of 200 Hz is 2500µs for low and high

states. Time delay subroutines load a value in a register or register-pair and

decrement it. When the value equals 0, it returns.

The statements from DCX D to JNZ REP is repeated N times (where N is

loaded in DE register-pair). LXI D, N and RET are executed only once.

Total T states in time delay = 24N +17

System frequency = 3.072 MHz

Thus, 1 T state = 0.3255μs

Time delay, td = (24N + 17) x 0.3255μs

For a delay of 2500 μs,

2500x10-6 = (24xN + 17) x 0.3255x10-6

N = 31910 = 013FH

Algorithm:

1. Start

2. Set control word (Port A as output port)

3. Set port A low

4. Call delay

5. Set port A high

6. Call delay

7. Go to Step 3

Program

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 3E, 80 MVI A, 80H
Load A with immediate data

80H

2002 D3, 03 OUT 03H Send content of A to CWR

2004 3E, 00 LOOP: MVI A, 00H
Load A with immediate data

00H

2006 D3, 00 OUT 00H
Send content of Acc to

output port A

2008 CD, 15, 20 CALL DELAY Call the delay subroutine

200B 3E, FF MVI A, FFH
Load A with immediate data

FFH

200D D3, 00 OUT 00H
Send content of Acc to

output port A

200F CD, 15, 20 CALL DELAY Call the delay subroutine

2012 C3, 04, 20 JMP LOOP Jump to LOOP to repeat

DELAY SUBROUTINE

2015 11, 3F, 01 DELAY: LXI D, 013FH
Load DE register pair with

value of N

2018 1B REP: DCX D Decrement D

2019 7A

MOV A, D Move content of D to A

201A B3

ORA E
OR the value of E with A

and store the result in A

201B C2,18, 20

JNZ REP Jump on non zero to REP

201E C9

RET Return to main program

Procedure

Enter the program for square wave generation from memory location 2000H

onwards. Execute the program and observe the waveform available at the pins of

port A. (Connect the probe to the corresponding Port A signal pins of CN4

connector)

Result

EXPERIMENT 8

INTERFACING D/A CONVERTER : GENERATION OF SIMPLE

WAVEFORMS-TRIANGULAR, RAMP

i. Triangular Waveform

Aim

 To generate a triangular wave of suitable amplitude using DAC interface.

Algorithm

1. To initialize 8255, load control word (80H) in Accumulator and sent it to

CWR (03H)

2. Clear Accumulator

3. Send Accumulator content to output port A (00H)

4. Increment Accumulator data

5. If Accumulator content not equal to FFH, go to Step 3

6. Out Accumulator content to Port A (00H)

7. Decrement Accumulator

8. If Accumulator content not equal to 00H, go to Step 6

9. Go to Step 3

Program

MEMORY

ADDRESS

MACHINE

CODE

LABEL MNEMONICS COMMENTS

2000 3E, 80 MVI A, 80H
Load Acc with immediate

data 80H

2002 D3, 03 OUT 03H Send content of Acc to CWR

2004 AF XRA A Clear the accumulator

2005 D3, 00 LOOP1: OUT 00H
Output the contents of Acc to

the output port A

2007 3C INR A Increment Acc

2008 FE, FF CPI FFH
Compare the content of

Accumulator with maximum

count

200A C2, 05, 20 JNZ LOOP1
Jump to LOOP1 if the result of

comparison is not equal to zero

200D D3, 00 LOOP2: OUT 00H
Output the value in acc at the

port A

200F 3D DCR A Decrement Acc

2010 C2, 0D, 20 JNZ LOOP2
Jump to LOOP2 if result of

comparison is not equal to zero

2013 C3, 05, 20 JMP LOOP1
Jump to LOOP1 to repeat the

process

ii. Ramp (Sawtooth) Waveform

Aim

 To generate a sawtooth waveform of suitable amplitude using DAC interface.

Algorithm:

1. To initialize 8255, load control word (80H) in Accumulator and sent it to CWR

(03H)

2. Clear Accumulator

3. Out Accumulator content to Port A

4. Increment Accumulator

5. Go to Step 3

(Since Accumulator is an 8-bit register, incrementing from FFH results in 00H)

Program

MEMORY

ADDRESS

MACHINE

CODE
LABEL MNEMONICS COMMENTS

2000 3E, 80 MVI A, 80H
Load A with immediate data

80H

2002 D3, 03 OUT 03H
Send the contents of A to output

port

2004 AF XRA A
EXOR the value of A with A

itself. This resets/clear

the accumulator.

2005 D3, 00 LOOP: OUT 00H Output the content of A to port

2007 3C INR A Increment A

2008 C3, 05, 20 JMP LOOP Jump to LOOP

Procedure

Enter the program from memory location 2000H onwards. Connect the CN4

pins of 8255 with the DAC module. Execute the program and observe the

output between X- Out and GND pins of the DAC.

Result

The following waveforms were generated using 8085.

Triangular waveform

Ramp waveform

EXPERIMENT 9

FAMILIARIZATION OF ARDUINO IDE

Arduino is an open-source physical computing platform based on a simple

microcontroller. It is a copyright held by the original team in Italy that developed

the hardware, the IDE (Integrated Development Environment), and the software

libraries. The Arduino development environment can run on Windows, Linux, or

macOS at no cost other than the hardware itself. The software is freely

downloadable as a single bundle from www.arduino.cc, the official website for

all things Arduino. Arduino can sense its environment by receiving input from

various sensors and can interact with its surroundings by controlling lights,

motors, and other actuators.

The Arduino board comes with a single LED, often called the Pin 13 LED

because it is electrically connected to Digital Pin 13. This LED is the board's only

built-in indicator accessible to programs.

https://www.arduino.cc/

EXPERIMENT 10

BLINKING INTERNAL LED OF ARDUINO UNO MODULE

Aim

To blink internal LED of Arduino UNO

Procedure

In the menu of the Arduino IDE you can choose:

The IDE will open the code to blink the built in LED automatically.

Uploading code to the Arduino

 Now our program is ready to upload to the Arduino. First we have to connect our

Arduino to the computer with the USB cable. Make sure you've selected the

correct board in the IDE:

and the correct port:

 If you are not sure which port to use, try them all until you can successfully

upload your code. Then verify your code for possible errors. The IDE only checks

if it can read your code. It does not check if you have written correct code for

what you are trying to program. If everything works, the IDE shows the

Compiling completed message. You can now upload your code by pressing the

upload button. The uploading is complete when the messages appear. Your

program will immediately start after uploading. As a result, you should now see

your Arduino LED blink with 1000ms intervals.

Program

void setup

{

// initialize digital pin LED_BUILTIN as an output.

pinMode(LED_BUILTIN, OUTPUT);

} // the loop function runs over and over again forever

void loop()

{

digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage

level) delay(1000); // wait for a second

digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage

LOW delay(1000); // wait for a second

}

Result

BLINKING EXTERNAL LED USING ARDUINO UNO MODULE

Aim

To blink an externally connected LED using Arduino UNO

Program

int LED = 8;

void setup()

{

// initialize digital pin LED as an output.

pinMode(LED, OUTPUT);

} // the loop function runs over and over again forever

void loop()

{

digitalWrite(LED, HIGH); // turn the LED on (HIGH is the voltage level)

delay(1000); // wait for a second

digitalWrite(LED, LOW); // turn the LED off by making the voltage LOW

delay(1000); // wait for a second }

Result

EXPERIMENT 11

ARDUINO BASED VOLTAGE MEASUREMENT

Aim

To measure a DC voltage in range 0-9 V using Arduino UNO

Theory

A voltage divider circuit consisting of two resistors in series will divide the input

voltage to bring it within the range of the Arduino analog inputs.

Design

(Design the suitable values of R1 & R2, such that maximum voltage across R2

will be 5V, when actual maximum input voltage is applied across series

combination, in this case, 9V)

Program

int value = 0;

float voltage;

float R1 = 100.0;

float R2 = 330.0;

void setup()

{

pinMode(A0, INPUT);

Serial.begin(9600);

}

void loop()

{

value = analogRead(A0);

voltage = value * (5.0/102)*((R1 + R2)/R2);

Serial.print("Voltage =");

Serial.println(voltage);

delay(500);

}

Circuit Diagram

Result

EXPERIMENT 12

TEMPERATURE AND HUMIDITY MONITORING OVER

THINGSPEAK USING ARDUINO UNO

Aim

To send Temperature and humidity data to Thingspeak Using Arduino and

ESP8266

Theory

Arduino Uno reads the current temperature and humidity data from DHT11 and

sends it to the ThingSpeak server for live monitoring from anywhere in the

world.

Components Required

• Arduino Uno

• ESP8266 WiFi Module

• DHT11 Sensor

• Breadboard

• Jumper Wires

Circuit Diagram

Connections

Step 1: ThingSpeak Setup for Temperature and Humidity Monitoring

Step 2: Create a Channel for Your Data

Step 3: API Key

Program

Programming Arduino for Sending data to ThingSpeak

Arduino code

#include <stdlib.h>

#include <DHT.h>

#define DHTPIN 5 // DHT data pin connected to Arduino pin 5

#define DHTTYPE DHT11 // DHT11 (DHT Sensor Type)

DHT dht(DHTPIN, DHTTYPE); // Initialize the DHT sensor

#define SSID "WiFi Name" // "WiFi Name"

#define PASS "WiFi Password" // "Password"

#define IP "184.106.153.149"// thingspeak.com ip

String msg = "GET /update?key=Your API Key"; //change it with your key...

float temp;

int hum;

String tempC;

int error;

void setup()

{Serial.begin(115200); // use default 115200.

Serial.println("AT");

 delay(5000);

 if(Serial.find("OK")){

 connectWiFi();}

}

void loop(){

 start:

 error=0;

 temp = dht.readTemperature();

 hum = dht.readHumidity();

 char buffer[10];

 tempC = dtostrf(temp, 4, 1, buffer);

 updateTemp();

 if (error==1){

 goto start;

 }

 delay(5000);

}

void updateTemp(){

 String cmd = "AT+CIPSTART=\"TCP\",\"";

 cmd += IP;

 cmd += "\",80";

 Serial.println(cmd);

 delay(2000);

 if(Serial.find("Error")){

 return;}

 cmd = msg ;

 cmd += "&field1=";

 cmd += tempC;

cmd += "&field2=";

 cmd += String(hum);

 cmd += "\r\n";

 Serial.print("AT+CIPSEND=");

 Serial.println(cmd.length());

 if(Serial.find(">")){

 Serial.print(cmd);

 }

 else{

 Serial.println("AT+CIPCLOSE");

 //Resend...

 error=1;

 }

}

 boolean connectWiFi(){

 Serial.println("AT+CWMODE=1");

 delay(2000);

 String cmd="AT+CWJAP=\"";

 cmd+=SSID;

 cmd+="\",\"";

 cmd+=PASS;

 cmd+="\"";

 Serial.println(cmd);

 delay(5000);

 if(Serial.find("OK")){

 return true;

 }else{

 return false;

 }

}

Result

EXPERIMENT 13

ARDUINO BASED DC CURRENT MEASUREMENT USING HALL

EFFECT CURRENT SENSOR

Aim

To measure the DC current using Hall effect current sensor and display the value

using the 12C LCD module

Theory

ACS712 is a hall effect current sensor. Hall effect will convert the magnetic field

created by the current that flows through the sensor to voltage directly

proportional to it and makes this sensor able to generate voltage linear with the

current that flows through this sensor.

Components Required

Arduino UNO

USB cable for Arduino

ACS712 sensor

DuPont wire set

Breadboard

LCD display

Circuit Diagram

Program Code

void setup() {

// put your setup code here, to run once:

Serial.begin(9600);

}

void loop() {

// put your main code here, to run repeatedly:

int adc = analogRead(A0);

float voltage = adc*(5/1023.0);

float current = (voltage-2.5)/0.185;

Serial.print("Current : ");

Serial.println(current);

delay(300);

}

 To display on LCD

#include "ACS712.h"

#include <Wire.h>

#include <LiquidCrystal_I2C.h>

LiquidCrystal_I2C lcd(0x27, 16, 2);

ACS712 sensor(ACS712_05B, A0);

//ACS712_20A for 20 Amp type

//ACS712_30A for 30 Amp type

void setup() {

Serial.begin(9600);

sensor.calibrate();

lcd.init();

lcd.backlight();

lcd.setCursor(0, 0);

lcd.print("ACS712 Demo");

}

void loop() {

float I = sensor.getCurrentAC();

if (I < 0.09) {

I = 0;

}

lcd.setCursor(0, 0);

lcd.print("Current : ");

lcd.print(I);

lcd.print(" A");

delay(300);

}

Result

EXPERIMENT 14

DIRECTIONAL CONTROL OF THE DC MOTOR USING ARDUINO

Aim

Directional Control of DC motor using Arduino

Theory

There is very basic to control the dc motor direction. all we know there is two

wires in the DC motor. one is positive and other is negative. when we connect

positive wire to positive terminal and negative wire to negative terminal the motor

will rotate clock wise.

and when we connect negative wire of motor with positive terminal and positive

wire with the negative terminal then the motor will rotate anti clock wise.

Components Required

Arduino Uno

Potentiometer

5v Relay-4

Zero PCB board

Bc547

Circuit Diagram

Program Code

void setup()

{

 pinMode(2, OUTPUT);

pinMode(3, OUTPUT);

pinMode(4, OUTPUT);

pinMode(5, OUTPUT);

}

void loop()

{

digitalWrite(2, HIGH);

digitalWrite(3, HIGH);

digitalWrite(4, LOW);

digitalWrite(5, LOW);

delay(100000);

 digitalWrite(2, LOW);

digitalWrite(3, LOW);

digitalWrite(4, HIGH);

 digitalWrite(5, HIGH);

delay(5000);

}

Result

EXPERIMENT 15

INTERFACING OF RELAY WITH ARDUINO

Aim

To interface a relay with Arduino

Theory

Relay is an electromagnetic switch, which is controlled by small current, and used

to switch ON and OFF relatively much larger current. Means by applying small

current we can switch ON the relay which allows much larger current to flow.

Components Required

Arduino

5V Relay

USB Cable

Breadboard

Jumper Wires

Connection Diagram

Steps of working:

1. The relay module connected with three pins. We will connect the relay module

with Arduino in the normally open state. The black one of relay is usually the

ground. Connect this to the Arduino GND.

2. Connect the red wire of relay module to 5V of the Arduino.

3. Connect the signal pin of relay module to a digital pin 6 of the Arduino.

4. Upload the code

5. Observe the clicking sound of the relay that states the ON and OFF constantly

Program Code

// Arduino Relay Control Code

int relayPin=6;

#define interval 2000

void setup() {

 pinMode(relayPin, OUTPUT);

}

void loop()

{

 digitalWrite(relayPin, HIGH);

 delay(interval);

 digitalWrite(relayPin, LOW);

 delay(interval);

}

Observations:

Sr no. Delay Relay Status

1.

2.

EXPERIMENT 16

BUILDING INTRUSION DETECTION SYSTEM WITH

ARDUINO AND ULTRASONIC SENSOR

Aim

To build and intrusion detection system (IDS) with Arduino and Ultrasonic

sensor.

Theory

The HC-SR04 ultrasonic sensor uses SONAR to determine the distance of an

object just like the bats do. It offers excellent non-contact range detection with

high accuracy and stable readings in an easy to-use package from 2 cm to 400 cm

or 1” to 13 feet. It comes complete with ultrasonic transmitter and receiver

module. The ultrasonic sensor uses the reflection of sound in obtaining the time

between the wave sent and the wave received. It usually sent a wave at the

transmission terminal and receives the reflected waves. The time taken is used

together with the normal speed of sound in air (340ms-1) to determine the

distance between the sensor and the obstacle. The Ultrasonic sensor is used here

for the intruder detection. The sound via a buzzer occurs when an object comes

near to the sensor. The distance to which the sensor will respond can be easily

adjusted in the program.

Hardware Required

Arduino UNO

Red LED

Green LED

HC-SR04 Ultrasonic Sensor

Buzzer

USB cable

Breadboard

Jumper wires

Connection Diagram

Steps of working

1. Insert the Ultrasonic sensor into your breadboard and connect its Echo

pin to the digital pin 2 and the Trigger pin to digital pin 3 of the

Arduino.

2. Insert the RED and Green LED into the breadboard. Attach the positive

leg (the longer leg) of red LED to signal pin of the Buzzer via the 220-

ohm resistor, and the negative leg to GND. The green LED is connected

to digital pin 8 of the Arduino.

3. Upload the code.

4. Observe the LEDs and take some object in front of ultrasonic sensor.

5. Observe the changes in the LED and buzzer sound.

Program Code

/**********Intrusion Detection******/

#define echo 2

 #define trig 3

 #define outA 8 // Red LED

 #define outB 9 // Green LED

 #define outC 10 // Buzzer

 float duration; // time taken by the pulse to return back

 float distance; // one way distance travelled by the pulse

const int intruderDistance = 10; // the minimum distance up to which the

sensor is able to sense any object

 void setup() {

 pinMode(trig, OUTPUT);

 pinMode(echo, INPUT);

 pinMode(outA, OUTPUT);

 digitalWrite(outA, LOW);

 pinMode(outB, OUTPUT);

 digitalWrite(outB, LOW);

pinMode(outC, OUTPUT);

 digitalWrite(outC, LOW);

 Serial.begin(9600);

}

void loop() {

time_Measurement();

distance = (float)duration * (0.0343) / 2;

// calculate the one way distance travelled by the pulse

Serial.println(distance);

alarm_condition();

 }

 void time_Measurement()

 { // function to measure the time taken by the pulse to return back

 digitalWrite(trig, LOW);

 delayMicroseconds(2);

 digitalWrite(trig, HIGH);

 delayMicroseconds(10);

 digitalWrite(trig, LOW);

 duration = pulseIn(echo, HIGH);

 }

 void alarm_condition()

 { //function to execute the output commands based on the sensor

input

 if(distance<=intruderDistance)

 {

digitalWrite(outA,HIGH);

 digitalWrite(outB,LOW);

 analogWrite(outC,200);}

 else

 {

digitalWrite(outA,LOW);

digitalWrite (outB, HIGH);

analogWrite (outC,0);

}

}

Observation

Sr No. Object Detected LED Buzzer

1

2

Result

