Department of Electrical Engineering

College of Engineering

Trivandrum

Lab Manual
Microprocessors and Embedded Systems Lab

(2024 scheme)

Department of Electrical Engineering

College of Engineering Trivandrum

This is a controlled document of the Department of Electrical Engineering of College of
Engineering Trivandrum, Thiruvananthapuram. No part of this can be reproduced in any
form by any means without the prior written permission of the professor and the Head of the

Department of Electrical Engineering, College of Engineering Trivandrum.

Prepared By Verified By Approved By

Dr. Lekshmi Mohan Prof. Vishal M J HOD

VISION

National Level Excellence and International Visibility in Every Facet of Engineering Research
and Education.

MISSION

To facilitate quality transformative education in Engineering and Management.
To foster innovations in Technology and its application for meeting global challenges. To

pursue and disseminate Quality Research. To equip, enrich and transform students to be
responsible professionals for better service to humanity.

DEPARTMENT OF ELECTRICAL ENGINEERING

VISION

Be a centre of excellence and higher learning in Electrical Engineering and allied areas.

MISSION

To impart quality education in Electrical Engineering and bring-up professionally competent
engineers.

To mould ethically sound and socially responsible Electrical Engineers with leadership
qualities.

To inculcate research attitude among students and encourage them to pursue higher studies.

Program Qutcomes

PO1

Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems

PO2

Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.

PO3

Design/development of solutions: Design solutions for complex engineering problems and
design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental
considerations

PO4

Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis
of the information to provide valid conclusions

POS

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering
activities with an understanding of the limitations.

PO6

The engineer and society: Apply reasoning informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant
to the professional engineering practice.

PO7

Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and
need for sustainable development

PO8

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

PO9

Individual and team work: Function effectively as an individual, and as a member or leader
in diverse teams, and in multidisciplinary settings

PO10

Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and
write effective reports and design documentation, make effective presentations, and give
and receive clear instructions.

PO11

Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member
and leader in a team, to manage projects and in multidisciplinary environments

PO12

Life-long learning: Recognize the need for, and have the preparation and ability to engage
in independent and life-long learning in the broadest context of technological change

Program Specific Outcomes

PSO1

Apply engineering knowledge to analyse, model, design and operate modern systems for
generation, transmission, distribution and control of electrical power.

PSO2

Design, develop and test modern hardware and software systems for signal processing,
measurement, instrumentation and control applications.

Course Objectives

1. Achieve proficiency in 8085 microprocessor assembly language programming
2. Acquire practical experience with Arduino.

At the end of the course students should be able to:

Course Outcomes (COs)

Bloom’s
Course Outcome Knowledge
Level (KL)
CO1 | Develop and execute assembly language programs for solving arithmetic K4
and logical problems using microprocessor
CO2 | Design and Implement systems with interfacing circuits for various K4
applications
CO3 | Execute projects as a team using microprocessor for real life applications. K3
CO4 | Design an Arduino based system with the help of various interfacing K6
devices

Note: KI-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping (Mapping of Course Outcomes with Program Outcomes)

PO1 | PO2 | PO3 | PO4 | POS | PO6 | PO7 | PO8 | POY | PO10 | PO11 | POI2 | PSO1 | PSO2
COol| 3 3 2 3 2 3 2 3 3 2 3
Co2| 3 3 2 3 2 3 2 3 3 2 2
CO3 3 3 2 2 2 3 3 3 3 3 2 2
COo4| 3 3 3 3 3 3

1:Slight (Low), 2:Moderate(Medium), 3:Substantial (High),-:No Correlation

List of Experiments

Exp.

No Title
1. Study of Internal Architecture of 8085 Microprocessor and Pin diagram
2. Data Transfer using Different Addressing Modes and Block Transfer
3 Arithmetic Operations in Binary and BCD: Addition and Subtraction
4. Arithmetic Operations: Multiplication and Division
5. Binary to BCD Conversion and BCD to Binary Conversion
6. Logical Operations
7. Digital I/O using PP1-Square Wave Generation
8. Interfacing D/A Converter : Generation of Simple Waveforms- Triangular, Ramp
9. Familiarization of Arduino IDE
10. | Blinking Internal LED of Arduino UNO Module
11. | Arduino Based Voltage Measurement
12. | Temperature and Humidity Monitoring over ThingSpeak using Arduino UNO
13. | Arduino Based DC Current Measurement using Hall Effect Current Sensor
14. | Directional Control of the DC Motor using Arduino
15. | Interfacing of Relay with Arduino
16. | Building Intrusion Detection System with Arduino and Ultrasonic Sensor

EXPERIMENT 1

STUDY OF INTERNAL ARCHITECTURE OF 8085

MICROPROCESSOR AND PIN DIAGRAM

A microprocessor is a multipurpose, programmable logic device that reads binary instructions
from a storage device called memory, accepts binary data as input and processes data according
to those instructions and provides result as output. It includes an Arithmetic / Logic unit (ALU),
a control unit and an array of registers as a small internal memory for holding data while it is
being manipulated or processed. It is a general-purpose device which may be used for different

purposes in different applications. Configuration of the system is flexible.

INTA

RST 6.5

TRAP

INiR TRSlS.S RST7.5

Interrupt control

ﬁA

SID

SOD

Senial 1/0 control

ﬁA

8-Bit Internal data bus

H E E I M i
B C
” ’ REG REG
emp lag Instruction |¢¢ D E
Accumulator reg flip-flops register REG REG
H L
REG REG
+ * ? * ﬂ Stack pointer
Arithmetic Instruction Program counter
logic decoder and
> unit machine |4 Incrementer/
(ALU) cycle decrementer
encoding address latch
X; X, GND +5V ot
R Il ==l
CLK Address Adg;f:y
GEN Control Status DMA Reset bufter buffer
CLK GEN READY RD WRALE S, S,10/M HOLD HLDA RESET IN RESET OUT A,lﬁlAn AD,-AD,

Fig 1.1 Hardware Architecture of 8085

INTERNAL ARCHITECTURE
ALU
The Arithmetic and logic unit (ALU) performs various arithmetic and logic operations like
Addition, Subtraction, Logical AND, Logical OR, Logical exclusive OR, complement (Logical
NOT), Increment (Add 1), Decrement (Subtract 1), Left shift (add input to itself) and clear
(result is zero).
REGISTERS
Registers are small memories within the CPU. They are used by the microprocessor for
temporary storage and manipulation of data and instructions. Data remain in the registers till
they are sent to the memory or 1/O devices.
Registers of 8085 are

e One 8-bit accumulator (ACC) ie, register A.

e Six 8-bit general purpose registers — B, C, D, E, H and L.

e One 16-bit program counter — PC.

e Instruction register — IR.

e Status register — Flag register

e One 16-bit Stack Pointer — SP.

e Temporary register — W and Z.
ACCUMULATOR
The accumulator, one of the most important 8 - bit registers of 8085, is mainly used for
arithmetic, logic and rotate operations. The primary purpose of this register is to store
temporary data and for the placement of final values of arithmetic and logic operations. It holds
one of the operands.
GENERAL PURPOSE REGISTER
There are 6 general purpose registers in the 8085 processor, i.e. B, C, D, E, H& L. Each register
can hold 8-bit data. These registers can work in pairs to hold 16-bit data and their pairing
combination is like B-C, D-E & H-L. The H-L pair works as a memory pointer.
FLAG REGISTERS
The flag register is a group of flip-flops used to give the status of the result of different
operations. The flag register in 8085 is an 8-bit register which contains 5 bit positions. These
five flags are 1-bit F/F and are known as sign, zero, auxiliary carry, parity and carry.
CY - Carryflag, it is set when carry is generated and otherwise, it is reset.
Z — Zero flagis set if the result of an operation is zero otherwise it is reset.
S — Sign flag, Signed number is negative if S = 1 and positive if S = 0.
P — Parity flag, it is set for even parity and reset for odd parity.
AC - Auxiliary Carry flag is used for BCD operations. It is set when a carry is generated
by digit D3 and passed to D4.
TEMPORARY REGISTER
There are 2 temporary registers, W and Z. It is also called operand register (8-bit). 8085 uses
them internally to hold data temporarily during the execution of some instructions.
SPECIAL PURPOSE REGISTERS
It consists of three 16 bit registers — Program counter, Stack pointer, Incrementer / Decrementer
Latch.

PROGRAM COUNTER
It holds the address of the next instruction to be executed to save time.
STACK POINTER
Stack is a portion of memory (RAM), that works in the LIFO concept. The stack pointer
maintains the address of the last byte that is entered into the stack. Each time when the data is
loaded into the stack, the Stack pointer gets decremented.
INCR/DECR LATCH
It is used to increment or decrement the content of program counter and stack pointer register.
ADDRESS / DATA BUFFER and ADDRESS BUFFER
The contents of the stack pointer and program counter are loaded into the address buffer and
address — data buffer. These buffers are then used to drive the external address bus and address—
data bus. As the memory and I/O chips are connected to these buses, the CPU can exchange
desired data to memory and 1/O chips. The address data buffer can both send and receive data
from internal data bus.
CONTROL UNIT
It performs data transfer and decision-making operations.
It consists of :

e Instruction Register

e Instruction Decoder

e Timing and Control unit

INSTRUCTION REGISTER

When an instruction like adding two data, moving a data, copying a data etc is fetched from
memory, it is directed to the instruction register. So instruction registers are specifically to store
the instructions that are fetched from memory.

INSTRUCTION DECODER
It decodes the information present in the instruction register for further processing. It then sends
the decoded information to the timing and control unit.

TIMING AND CONTROL UNIT
It synchronizes the registers and flow of data through various registers and other units. This
unit consists of an oscillator and sends control signals needed for internal and external control
of data and other units. The oscillator generates clock signals.
Signals that are associated with this unit are:

e Control signals: READY, RD, WR, ALE

e Status signals: SO, S1, I0/M

e DMA signals: HOLD, HLDA

e Resetsignals: RESETIN , RESET OUT

CONTROL AND STATUS SIGNALS
e RD - Read (active low) — Indicate that 1/0O or memory selected is to be read and data
are available on the bus.

e WR — Write (active low) — Indicate that data available on the bus are to be written to
memory or 1/O ports.
e |0/M - Differentiate 1/0 operation or memory operations.
0 — indicates a memory operation
1 —indicates an 1/0 operation
e S1 and SO — Status signals, tells current operation.

INTERRUPT CONTROLLER
Interrupt signals present in 8085 are:

1. INTR

2. TRAP

3. RST75

4. RST6.5

5. RST55
Whenever the interrupt signal is enabled or requested, the microprocessor shifts the control
from the main program to process the incoming request. After the request is completed, the
control goes back to the main program.
SERIAL 1/O CONTROL
The input and output of serial data can be carried out using two instructions in 8085:

1. SID - Serial input data

2. SOD - Serial output data
Data on these line is accepted or transferred under software control by serial 1/0 control block,
by using special instructions RIM & SIM.

8085 PIN DIAGRAM

8085 is an 8-hit, NMOS microprocessor. It is available as a 40-pin I1C package fabricated on a
single LSI chip. It uses a single +5V DC supply for its operation. 8085 microprocessor has a
clock speed of about 3 MHz and the clock cycle is of 320ns. It has about 6500 transistors. It
has 80 basic instructions and 246 opcodes. It consists of three main sections, arithmetic and
logic unit, timing and control unit and several registers.

Y, Y
Xy =il — =
Crystd Input J X n - HLOA]
l x) — 39 fe—)
Reset Our 4=t 3 33 M——HOLD
5 N| fp CLEOUT
Serial 1/0 % 4
SO0 @5 3 jg—RESETIN Timing and
7 TRAP et 6 35 M REALY k Control dgnds
RST7S =il 7 U e O/
RSTES e 3 >,
Interrupts INTEL T
RETSS mppy 9 32 R0
INR ——pii0 BO0BSA . | o
r ADy <412 29—,
ADy A] 13 % :,'\AU
ADy —n{14 57 =2
AI\;' AD AD. E — 15 % ‘EA“
Address Data A 5 o A N0
e 1 AE‘! <16 ol == { Address bus
N7 24 Ay
AD; «—={18 n =/
ADy 19 2 =M
\ V: JE— 20 21 v—-«fg

A8-A15 (Output):-
These are address bus and used for the most significant bits of memory address.

ADO-AD7 (Input/OQutput):-

These are time-multiplexed address data bus. These are used for the least significant 8 bits of
the memory address during first clock cycle and then for data during the second and third clock
cycle.

ALE (Address Latch Enable):-
It goes high during the 1st clock cycle of a machine. It enables the lower 8 bits of address to
be latched either in the memory or external latch.

IO/M:-
It is status signal, when it goes high; the address on address bus is for I/O device, otherwise
for memory.

SO, S1:-
These are status signals to distinguish various types of operation.

S1 SO Operations

0 0 Halt

0 1 Write

1 0 Read

1 1 Opcode Fetch

RD (output):-
It is used to control read operation.

WR (output):-
It is used to control write operation.

HOLD (input):-
It is used to indicate that another device is requesting the use of the address & data bus.

HLDA (output):-
It is an acknowledgement signal used to indicate HOLD request has been received.

INTR (input):-
When it goes high, the microprocessor suspends its normal sequence of operations.

INTA (output):-
It is an interrupt acknowledgement signal sent by the microprocessor after INTR is received.

RST 5.5, 6.5, 7.5 and TRAP:-
These are various interrupt signals. Among them, TRAP is having highest priority.

RESET IN (input):-
It resets the PC to zero.

RESET OUT (output):-
It indicates that the CPU is being reset.

X1, X2 (input):-
This circuitry is required to produce a suitable clock for the operation of microprocessor. .

CIk (output):-
It is clock output for the user. Its frequency is the same at which the processor operates.

SID (input):-
It is used for data line for serial input.

SOD (output):-
It is used for data line for serial output.

Vcc:-
+5 volts supply.

V/ss:-
Ground reference.

8085MICROPROCESSOR TRAINER KIT M85-03

M85-03 kit is a single-board Microprocessor training kit based on 8085 microprocessor.
It provides monitor EPROM and user’s RAM with battery backup. The kit has 28 keys
hexadecimal keyboard and six digit seven segment displays for display. The kit also has
the capability of interacting with a PC through an RS-232C serial link. The Input/Output
structure of M85-03 provides 48 programmable 1/0 lines using 8255.

PROCEDURE

EXMEM(Examine memory) keyboard command is used to examine the memory locations.
To examine the contents of the location for 2500 and 2501, the following key
sequence has to be used.

RESET—-EXMEM—2500—-NEXT—2501

To enter the program

RESET— EXMEM-— Enter Starting address of program — NEXT — Enter the
machine code — NEXT

To execute the program

RESET —GO— Starting address of program—. (Dot)(Fill Key)

To check the result

RESET—-EXMEM— Enter the address of the result location

To check the reqgister content

Shift - EXREG — A/ B/C/D/E/H/L

EXPERIMENT 2

DATA TRANSFER USING DIFFERENT ADDRESSING MODES AND
BLOCK TRANSFER

1. Write an ALP for loading registers A, B, C, D, E, H and L with single-byte data
using immediate addressing and observe the register contents.

MEMORY | MACHINE
ADDRESS CODE LABEL MNEMONICS COMMENTS
2000 3E, 01 START: MVI A,01H Load A with 01
2002 06, 02 MVI B,02H Load B with 02
2004 OE, 03 MVI C,03H Load C with 03
2006 16, 04 MVI D,04H Load D with 04
2008 1E, 05 MVI E,05H Load E with 05
200A 26, 06 MVI H,06H Load H with 06
200C 2E, 07 MVI L,07H Load L with 07
Return to monitor
200E EF END: RST 05
program

2. Write an ALP for loading registers B, C, D, E, H and L with the same data
using register addressing and observe the register contents.

MEMORY | MACHINE

ADDRESS CODE LABEL MNEMONICS COMMENTS

Load accumulator

2000 3A, 50,20 | START: LDA 2050H with content of 2050

Move the content

2003 47 MOV B, A of AtoB

Move the content

2004 4F MOV C, A of AtoC

Move the content
2005 57 MOV D, A of Ao D
2006 5F MOV E, A Move the content
of Ato E
Move the content
o o MOV H, A of Ato H
2008 6F MOV L, A Move the content
of AtoL
2009 EF END: RST 05 Return to monitor
program

3. Write an ALP for loading register pairs BC, DE and HL with 16-bit data using

immediate addressing and observe the register pair contents.

MEMORY | MACHINE
ADDRESS CODE LABEL| MNEMONICS COMMENTS
2000 01,50,21 | START: LXI B, 2150H Load BC register pair with
data 2150
2003 11,51, 21 LXI D, 2151H Load DE register pair with
data 2151
2006 21,52, 21 LXI H, 2152H Load HL register pair with
data 2152
2009 EF END: RST 05 Return to monitor program

4. Write an ALP to copy a block of 8-bit data from 4 memory locations (2250-2253) to
another 4 memory locations (2254-2257) using direct addressing.

MEMORY | MACHINE
ADDRESS CODE LABEL MNEMONICS COMMENTS
2000 3A,50,22 | START: LDA 2250H Load data in 2250
to accumulator
2003 32 54 92 STA 2954H Accumulator content
- stored in 2254
2006 3A, 51, 22 LDA 2251H Load data in 2251
to accumulator
2009 32,55, 22 STA 2255H Accum_ulator data
stored in 2255

200C 3A, 52, 22 LDA 2952H Load data in 2252
to accumulator
Accumulator data

oo 32, 96.22 STA 2256H stored in 2256

2012 3A, 53, 22 LDA 2253H Load data in 2253
to accumulator
Accumulator data

o 3,50 22 STA 225TH stored in 2257

2018 EF END: RST 05 Return to monitor
program

5. Write an ALP to copy a block of 8-bit data from 4 memory locations (2250-2253) to
another 4 memory locations (2254-2257) using 16-bit data transfer addressing mode
direct addressing.

MEMORY | MACHINE
ADDRESS CODE LABEL| MNEMONICS COMMENTS
_ Data in 2250 to Lregister
2000 2A, 50, 22 | START:| LHLD 2250H and datain 2251 to H
L register contentto 2254
2003 22,54,22 SHLD 2254H and H content to 2255
Data in 2252 to Lregister
2006 2A, 52, 22 LHLD 2252H and datain 2253 to H
L register contentto 2256
2009 22,56, 22 SHLD 2256H and H content to 2257
200C EF END: | RST 05 Return to
monitor program

6. Write an ALP to transfer a block of 8-bit data from 4 memory locations (2250-2253) to
another 4 memory locations (2254-2257) using indirect addressing.

MEMORY | MACHINE
ADDRESS CODE LABEL MNEMONICS COMMENTS
2000 21.50,22 | START:|LXI H, 22504 | S€tup HL as a pointer of
source.
™ D. 2254H Set up DE as a pointer of
2003 11,54, 22 ’ destination
2006 06, 04 MVI B, 04 Set up the counter
2008 7E LOOP: | MOV A M Get data from source to
accumulator

2009 12 STAX D Store data in destination

200A 23 INX H Pomt_er to next source
location

200B 13 INX D Pomt_er to next destination
location

200C 05 DCR B Decrement counter

200D C2, 08, 20 INZ LOOP If th_e transfer is not over,
continue

2010 EF END: | RST 05 Return to monitor program

EXPERIMENT 3

ARITHMETIC OPERATIONS IN BINARY AND BCD: ADDITION AND

SUBTRACTION

1. Write an ALP to add two 8-bit numbers, sum 8 bits.

MEMORY | MACHINE
ADDRESS CODE LABEL | MNEMONICS COMMENTS
2000 21, 00, 25 START: | LXI H,2500H Initialize memory pointer
2003 7E MOV A M Load the first o_perand from
memory to register A
2004 23 INX H Increment content of H-L
pair
2005 16 MOV B, M Load the second ope_rand
from memory to register B
2006 80 ADD B Add 1% and 2" numbers
2007 23 INXH Pointer to store the result
Store result to
2008 77 MOV M, A memory
2009 EF END: RST 05 Return to Monitor program

2. Write an ALP to add two 8-bit numbers, sum 16 bits.

MEMORY | MACHINE
ADDRESS CODE LABEL | MNEMONICS COMMENTS
st i
2000 21,01,25 | START: | LXIH, 25014 | Address of 1% number in
H-L pair.
st H
2003 7E MOV A, M 1™ number in
accumulator.
Address of 2" number
2004 23 INXH 2502 in H-L pair.
Load the second operand
2005 46 MOV B, M from memory to register
B
MSBs of sum in register
2006 OE, 00 MVI C, O0H C.
Initial value = 00.

2008 80 ADD B 1% number + 2" number.
200C 0C INR C Yes, increment C.

200D 23 AHEAD: | INX H Il_n;gairrnent content of H-
200E 77 MOV M, A L\C/)I?l\w/ee r;k:)er ;asult from A
200F 23 INX H II_ntlc:)raeirrrl]ent content of H-
2010 71 MOV M, C rl\T/]Ié)r\r/]% :Se result from C to
2011 EF END: | RST 05 Return to

Monitor program

3.Write an ALP to add two16 bit numbers, sum 16 bits or more.

MEMORY

MACHINE

ADDRESS CODE LABEL | MNEMONICS COMMENTS
st _hi : _
2000 | 2A.01,25 | START: | LHLD 2501H ;a#G bit number in H-L
st P
2003 EB XCHG Ge_t 1% number in D-E
pair.
nd _ - - _
2004 | 2A,03 25 LHLD 2503H éairw bit number in H-L
2007 OE, 00 MVI C, 00H MSB_s_of sum m_reglster
C. Initial value = 00.
2009 19 DAD D 15t number + 2" number.
Is carry? No, go to the
200A D2, OE, 20 JNC AHEAD label AHEAD.
200D (0]® INRC Yes, increment C.
200E 22.05,25 | AHEAD: | SHLD 2505 4 | Store LSBs of sum in 2505
and 2506 H.
2011 79 MOV A, C MSBSs of sum in
accumulator
2012 32, 07,25 STA 2507H MSBs of sum in 2507 H.

2015

EF

END:

RST 05

Return to Monitor
program

4. Write an ALP to subtract two 8-bit numbers, difference 8 bits.

MEMORY | MACHINE
ADDRESS CODE LABEL | MNEMONICS COMMENTS
2000 21, 00, 25 START: | LXI H,2500H Initialize memory pointer
2003 7E MOV A, M Load the first qperand from
memory to register A
2004 23 INX H Increment content of H-L
pair
2005 16 MOV B, M Load the second ope_rand
from memory to register B
Subtract 2" number from
2006 90 SUBB 15 number
2007 23 INX H Pointer to store the result
Store result to
2008 77 MOV M, A memory
2009 EF END: | RST 05 Return to Monitor program

5. Write an ALP for the decimal addition of two 8-bit numbers, sum 16 bits.

MEMORY | MACHINE
ADDRESS CODE LABEL MNEMONICS COMMENTS
st H
2000 21,0125 | START: | LXIH, 25014 | Address of 1% number in
H-L pair.
st H
2003 7E MOV A, M 1% number in
accumulator.
Address of 2" number
2004 23 INXH 2502 in H-L pair.
Load the second operand
2005 46 MOV B, M from memory to register
B
MSBs of sum in register
2006 OE, 00 MVI C, 00H C.
Initial value = 00.
2008 80 ADD B 1t number + 2" number.

2009 27 DAA Decimal adjust

200D 0C INRC Yes, increment C.

200E 23 AHEAD: | INX H Il_n;gairrnent content of H-
200F 77 MOV M, A L\C/)I?:]/: r:}k:)er ;asult from A
2010 23 INX H II_ntlc:)raeirrrl]ent content of H-
2011 71 MOV M, C rl\T/]Ié)r\r/]((e):;e result from C to
2012 EF END: | RST 05 Return to

Monitor program

6. Write an ALP to add a series of 8-bit numbers, sum 16 bits.

MEMORY | MACHINE
ADDRESS CODE LABEL | MNEMONICS COMMENTS
2000 21,00,25 | START: | LXIH, 2500H Load the_address of count
to HL pair
2003 AE MOV C, M Load C with the count
value.
2004 3E, 00 MVI A, 00H LSBs of sum = 00 (initial
value)
2006 47 MOV B, A MSBs of sum = 00 (initial
value)
2007 23 LOOP: | INXH Point to next location.
2008 86 ADD M Add memory content with
accumulator.
2009 D2, 0D, 20 INC AHEAD When carry flag is 0, skip
next task.
200C 04 INR B Yes, add carry to MSBs of
sum.
200D 0D AHEAD: | DCRC Decrement C register by 1.
200E C2, 07,20 INZ LOOP When Zero flag is not set,

go to Loop.

Store LSBs of the sum in

2011 32,50, 24 STA 2450H 2450 H.
2014 78 MOV A, B Get MSBs of sum in
accumulator.
Store MSBs of the sum in
2015 32,51, 24 STA 2451H 2451 H.
2018 EF END: | RSTO05 Return to

Monitor program

7. Write an ALP to add a series of 8-bit decimal numbers, sum 16 bits.

MEMORY | MACHINE
ADDRESS CODE LABEL | MNEMONICS COMMENTS

2000 21,00,25 | START: | LXIH, 2500H Load the_address of count
to HL pair

2003 AE MOV C, M Load C with the count
value.

2004 3E, 00 MVI A, 00H LSBs of sum = 00 (initial
value)

2006 47 MOV B, A MSBs of sum = 00 (initial
value)

2007 23 LOOP: |INXH Point to next location.

2008 86 ADD M Add memory content with
accumulator.

2009 27 DAA Decimal adjust

200A D2, OE, 20 INC AHEAD When carry flag is 0, skip
next task.

200D 04 INR B Yes, add carry to MSBs of
sum.

200E 0D AHEAD: | DCRC Decrement C register by 1.

200F C2, 07, 20 INZ LOOP When Zero flag is not set,
go to Loop.
Store LSBs of the sum in

2012 32,50, 24 STA 2450H 2450 1.

2015 78 MOV A, B Get MSBs of sumin
accumulator.

2016 32,51, 24 STA 2451H Store MSBs of the sum in

2451 H.

2019

EF

END:

RST 05

Return to
Monitor program

8. Write an ALP to shift an 8-bit number left by 1 bit.

/'\A\/IEEI\)/IRE?EF;\S(Mé((;HDIENE LABEL | MNEMONICS COMMENTS
2000 3A,01,25 | START: | LDA 2501H Get data in accumulator.
2003 87 ADD A Shift it left by one bit.
2004 32,02, 25 STA 2502H Store result in 2502 H
2007 EF END: RST 05 Return to monitor program

9. Write an ALP to shift an 8-bit number left by 2 bits.

/I\A/IEI!\)/IR?EF\;\S(MéglE)“ENE LABEL | MNEMONICS COMMENTS
2000 3A,01,25 | START: | LDA 2501H Get data in accumulator.
2003 87 ADD A Shift it left by one bit.
2004 87 ADD A Sn'ft it left again by one
2005 32,02, 25 STA 2502H Store result in 2502 H
2008 EF END: | RST 05 Return to monitor program

10. Write an ALP to shift a 16-bit number left by 1 bit.

MEMORY

MACHINE

ADDRESS CODE LABEL | MNEMONICS COMMENTS
2000 2A,01,25 | START: | LHLD 2501H Get 16 bit data in HL pair.
2003 29 DADH Shift it left by one bit.
2004 22.03, 25 SHLD 2503H Store the result in 2503

and 2504 H.

2007

EF

END:

RST 05

Return to monitor program

11.Write an ALP to shift a 16-bit number left by 2 bits.

MEMORY | MACHINE

ADDRESS CODE LABEL | MNEMONICS COMMENTS
2000 2A,01,25 | START: | LHLD 2501H Get 16 bit data in HL pair.
2003 29 DADH Shift it left by one bit.
2004 29 DAD H gnlft it left again by one

Store the result in 2503

2005 22,03, 25 SHLD 2503H and 2504 H.
2008 EF END: RST 05 Return to monitor program

EXPERIMENT 4

ARITHMETIC OPERATIONS: MULTIPLICATION AND DIVISION

1. Write an ALP to multiply two 8-bit numbers stored at locations 2500H and 2501H and
the product is stored at 2502H and 2503H.

MEMORY | MACHINE
ADDRESS CODE LABEL | MNEMONICS COMMENTS

2000 21,00,25 | START: |LXIH, 2500+ | -03d H-L pairwith address
2500H

2003 46 MOV B, M Get. the first number in the B
register

2004 23 INXH Increment H-L pair

2005 AE MOV C, M Get. the second number in the C
register

2006 3E, 00 MVI A, 00H Initialise accumulator with O0H

2008 16, 00 MVI D,00H Initialise D register with 00H

200A 80 LOOP: | ADD B Ad(_j content of Accumulator to
register B.

200B D2, OF, 20 JNC AHEAD Jump on no carry to AHEAD

200E 14 INR D Increment D register if carry
present

200F oD AHEAD: | DCRC Decrement content of register C

2010 C2,0A, 20 JNZ LOOP Jump on not zero to LOOP

2013 23 INXH Increment H-L pair
Move the result from accumulator

2014 7 MOV M, A to memory location 2502H

2015 23 INXH Increment H-L pair

2016 7 MOV M., D Move the carry from D register to
memory location 2503H

2017 EF END: RST 05 Return to monitor program

2. Write an ALP to multiply a 16-bit number by an 8-bit number. Multiplicand is stored
at locations 2100H and 2101H and the multiplier is in 2102H. The product is to be
stored at 2103H and 2104H.

MEMORY

MACHINE

ADDRESS CODE LABEL | MNEMONICS COMMENTS
2000 21,02,21 | START: | LXIH,2102H | Jiiaiize memory pointer with
2003 46 MOV B, M Load multiplier in B register
2004 11, 00, 00 LXI D, 0000H Initialise the DE pair with 0000H
2007 2A, 00, 21 LHLD 2100H Load multiplicand in H-L pair
200A EB XCHG Exchange DE with HL pair
200B 19 BACK: | DAD D Add DE and HL contents
200C 05 DCR B Decrement register B
200D C2,08B, 20 JNZ BACK If not zero, go to BACK
2010 22,03, 21 SHLD 2103H | 5ore Ihe Productin HiL- pairto
2013 EF END: | RST 05 Return to monitor program

3. Write an ALP for binary division. The 8-bit divisor and dividend are stored at memory
locations 2100H and 2101H respectively. The remainder and quotient should be stored

at 2102H and 2103H respectively.

MEMORY | MACHINE
ADDRESS CODE LABEL | MNEMONICS COMMENTS
2000 21,00,21 | START: | LXIH, 21000 | 'Nitialize HL pair as memory
pointer
2003 46 MOV B, M Load divisor in B register
2004 23 INXH Increment HL pair
2005 7E MOV A, M Load dividend to accumulator

2006 23 INXH Increment HL pair

2007 0E, 00 MVI C, 00H Initialize quotient as 00H
2009 B8 CMP B Is dividend less than divisor?
200A DA, 13, 20 JC AHEAD If yes, jump to AHEAD
200D 90 BACK: |SUBB Subtract divisor from dividend
200E 0C INR C Increment C register

200F B8 CMP B Is dividend less than divisor
2010 D2, 0D, 20 JNC BACK If no carry, jump to BACK
2013 77 AHEAD: | MOV M, A Store remainder at 2102H
2014 23 INXH Increment HL pair

2015 71 MOV M, C Store quotient at 2103H
2016 EF END RST 05 Return to monitor program

BINARY TO BCD CONVERSION AND BCD TO BINARY CONVERSION

EXPERIMENT 5

1. Write an ALP to convert BCD to Binary

MEMORY | MACHINE
ADDRESS CODE LABEL | MNEMONICS COMMENTS
) Load accumulator with content
2000 3A,00,25 | START: | LDA 2500H of address 2500
2003 47 MOV B, A Move data from accumulator to
reg. B
2004 E6, FO ANI FOH AND FO0 with accumulator
content
Rotate accumulator content
2006 OF RRC right by 1 bit
Rotate accumulator content
2007 OF RRC right by 1 bit
Rotate accumulator content
2008 OF RRC right by 1 bit
Rotate accumulator content
2009 OF RRC right by 1 bit
200A 57 MOV D, A Move data from accumulator to
reg. D
200B OE, OA MVI C, 0AH Initialise C register with 0AH
200D 97 SUB A Subtract A from A (clearing
accumulator)
200E 82 BACK: | ADDD Add D with A
200F 0D DCR C Decrement C register
2010 C2, OE, 20 JNZ BACK Jump if not zero to BACK
2013 57 MOV D, A Move data from accumulator to
reg D
2014 73 MOV A, B Move data from reg B to
accumulator
2015 E6, OF ANI OFH AND OF with accumulator
content
2017 82 ADD D Add D with A

2018

32,01, 25

STA 2501H

Store accumulator content in
2501H

201B

EF

END:

RST 05

Return to monitor program

2. Write an ALP to convert Binary to BCD

Z/IlfglR(l)El;‘S{ MégI;IENE LABEL | MNEMONICS COMMENTS
2000 16,00 START: | MVI D, 00H Initialise D with 00H
2002 1E,00 MVIE, 00H Initialise E with 00H
2004 21, 00, 24 LXI H, 2400H 52881?* pair with address
2007 7 Moy M | Move data from memory to
2008 FE,64 | HUND: |CPIG4H Compare data in accumulator
200A DA 13,20 JC TEN Jump on carry to label TEN
200D 1C INRE Increment E register
200E D6, 64 SUI 64H Subtract 64H from accumulator
2010 C3, 08,20 JMP HUND Jump to label HUND
2013 FE,0A | TEN: |CPIOAH Compare data in accumulator
2015 DA, 1E, 20 JC UNIT Jump if carry to label UNIT
2018 14 INRD Increment D register
2019 D6, 0A SUI OAH Subtract 0AH from accumulator
201B C3,13,20 JMP TEN Jump to label TEN
201E 23 UNIT: |INXH Increment H-L pair
201F 73 MOV M.E Move data from reg. E to

memory

Move data from accumulator

2020 4F MOV C,A
to reg. C

2021 7A MOV A.D Move data from reg. D to
accumulator

2022 07 RLC Rotate' accumulator content left
by 1 bit

2023 07 RLC Rotate' accumulator content left
by 1 bit

2024 07 RLC Rotate' accumulator content left
by 1 bit

2025 07 RLC Rotate‘ accumulator content left
by 1 bit

2026 81 ADD C Add C with A

2027 23 INX H Increment H-L pair

2028 77 MOV M, A Move data from accumulator
to memory

2029 EF END: RST 05 Return to monitor program

EXPERIMENT 6

LOGICAL OPERATIONS

1. Write an ALP to find the larger of two numbers.

MEMORY | MACHINE
ADDRESS CODE LABEL | MNEMONICS COMMENTS
2000 21,01, 25 START: | LXIH, 2501H Address of 1% number in H-L pair.
2003 7E MOV A, M 1% number in accumulator.
nd H _
2004 23 INX H Ad_dress of 2" number in H-L
pair.
Compare 2" number with 1%
2005 BE CMPM number. Is the 2" number >1% ?
No, larger number is in
2006 D2, 04, 20 INC AHEAD accumulator. Go to AHEAD.
nd H
2009 7E MOV A, M Yes, get 2" number in
accumulator.
200A 32,08, 25 AHEAD: | STA 2503H Store larger number in 2503H.
200D EF END: RST 05 Return to monitor program

2. Write an ALP to find the smaller of two numbers.

MEMORY | MACHINE
ADDRESS CODE LABEL MNEMONICS COMMENTS
2000 21,01, 25 START: | LXIH, 2501H Address of 1%t number in H-L pair.
2003 7E MOV A, M 1% number in accumulator.
nd H -
2004 23 INX H Aeress of 2"% number in H-L
pair.
Compare 2" number with 1%
2005 BE CMF M number. Is the 2" number >15 ?
Yes, smaller number is in
2006 DA, 0A, 20 JC AHEAD accumulator. Go to AHEAD.

nd H
2009 7E MOV A, M No, get 2" number in
accumulator.
200A 32,04, 25 AHEAD: | STA 2504H Store smaller number in 2504H.
200D EF END: RST 05 Return to monitor program

3. Write an ALP to find the largest number in an array of 8-bit numbers.

MEMORY | MACHINE
ADDRESS CODE LABEL | MNEMONICS COMMENTS
2000 21, 00, 25 START: | LXIH, 2500H | Address for count in H-L pair.
2003 4E MOV C, M Count in register C.
2004 23 INXH Address of 1% number in H-L pair.
2005 7E MOV A, M 1% number in accumulator.
2006 0D DCR C Decrement count.
2007 23 LOOP: INX H Address of next number.
2008 BE CMP M Com_pare next no. with previous
maximum. Is next no. > previous?
No, larger number is in accumulator.
2009 D2, 0D, 20 JNC AHEAD Go to the label AHEAD.
200C 7E MOV A M Yes, get larger number in
accumulator.
200D oD AHEAD: |DCRC Decrement count.
200E C2,07, 20 JNZ LOOP Jump if not zero.
2011 32,50, 24 STA 2450H Store result in 2450H.
2014 EF END: RST 05 Return to monitor program

4. Write an ALP to find the smallest number in an array of 8-bit numbers.

MEMORY | MACHINE
ADDRESS CODE LABEL | MNEMONICS COMMENTS
2000 21,00,25 | START: | LXIH, 2500H | Address for countin H-L pair.
2003 4E MOV C, M Count in register C.
2004 23 INXH Address of 1% number in H-L pair.
2005 7E MOV A, M 1%t number in accumulator.
2006 0D DCRC Decrement count.
2007 23 LOOP: | INXH Address of next number.
2008 BE CMP M Com_pare next no. with previous
maximum. Is next no. > previous?
Yes, smaller number is in accumulator.
2009 DA, 0D, 20 JC AHEAD Go to the label AHEAD.
200C 7E MOV A M No, get smaller number in
accumulator.
200D oD AHEAD: | DCRC Decrement count.
200E C2,07, 20 JNZ LOOP Jump if not zero.
2011 32,51, 24 STA 2451H Store result in 2451H.
2014 EF END: RST 05 Return to monitor program

5. Write an ALP to sort an array of 8-bit numbers in the descending order.

MEMORY | MACHINE
ADDRESS CODES LABEL MNEMONICS COMMENTS
2000 21, 00, 26 START: | LXIH, 2600H Set pointer for array.

2003 4E MOV C, M Load the Count.

2004 0D DCR C Decrement Count.

2005 51 REPEAT: | MOV D, C _Count_ the number of Comparisons
In register D.

2006 2101, 26 LXI H, 2601H Load starting address of data
array.

2009 7E LOOP: | MOV A M Copy content of memory location
to Accumulator.

200A 23 INXH Increment content of HL pair

200B BE CMP M Compare the number with next
number.

200C | D2 14,20 INC SKIP Jump to skip if carry not
generated.

200F 46 MOV B, M Copy content of memory location
to B Register.

2010 77 MOV M, A Copy content _of Accumulator to
memory location.

2011 2B DCX H Decrement content of HL pair

2012 70 MOV M. B Copy content _of B Register to
memory location.

2013 23 INXH Increment content of HL pair

2014 15 SKIP: DCRD Decrement D register

2015 C2,09, 20 JNZ LOOP Jump to LOORP if not Zero.

2018 0D DCRC Decrement C register

2019 C2, 05, 20 JNZ REPEAT Jump to REPEAT if not Zero.

201C EF END: RST 05 Return to monitor program

6. Write an ALP to sort an array of 8-bit numbers in the ascending order.

MEMORY | MACHINE
ADDRESS CODES LABEL MNEMONICS COMMENTS

2000 21, 00, 26 START: | LXIH, 2600H Set pointer for array.

2003 4E MOV C, M Load the Count.

2004 0D DCRC Decrement Count.

2005 51 REPEAT: | MOV D, C _Count_ the number of Comparisons
in register D.

2006 2101, 26 LXI H. 2601H Load starting address of data
array.

2009 7E LOOP: | MOV A M Copy content of memory location
to Accumulator.

200A 23 INXH Increment content of HL pair

200B BE CMP M Compare the number with next
number.

200C DA, 14, 20 JC SKIP Jump to skip if carry generated.

200F 16 MOV B, M Copy content of memory location
to B Register.

2010 77 MOV M. A Copy content _of Accumulator to
memory location.

2011 2B DCX H Decrement content of HL pair

2012 70 MOV M. B Copy content _of B Register to
memory location.

2013 23 INX H Increment content of HL pair

2014 15 SKIP: DCR D Decrement D register

2015 C2,09, 20 JNZ LOOP Jump to LOORP if not Zero.

2018 oD DCRC Decrement C register

2019

C2, 05, 20

JNZ REPEAT

Jump to REPEAT if not Zero.

201C

EF

END:

RST 05

Return to monitor program

Aim

To generate a pulse train of frequency 200 Hz and duty cycle 50%.

Theory

Waveform generation using microprocessor requires input-output ports interfaced to it.
Programmable peripheral interface (PPI) 8255 is a general purpose programmable I/O
device designed to interface the CPU with its outside world such as ADC, DAC, keyboard
etc. IC 8255 provides 3 nos. of 8-bit ports (Port A, Port B and Port C). IC 8255 needs to
be initialized before use. Initialization includes setting mode of 8255 (Input-Output or
Bit Set Reset) and data direction in case of IO mode (Input or Output) for individual ports.
In this case, 8255 is setup in /O mode with all ports as output ports. So the initialization
control word 1s 80H.

The data send out from microprocessor to 8255 may be directed to Port A, B, C or Control

EXPERIMENT 7

DIGITAL 1/0 USING PPI- SQUARE WAVE GENERATION

Word Register (CWR). Each register mentioned above is given an 8-bit address.

I/0O address range

Port A = 00H; Port B=01H; Port C = 02H; Control word Register CWR = 03H

To initialize the 8255, load control word (80H) in Accumulator and send it to CWR

(03H)

PA; _J
PA; —
PA, —
PA —
D —
cs —
GND—
M —
A —
PC; —
PCg —
PCg —f
PCs —
PCo —
PCy —
PCz —|
PCy —
PBy —|
PBy —
PB; —

® NGO A W N

e R QT G Gt U T e SR " |
O ® ® N ;s W N - O

8255A

40
39
38
37
36
35

33
32
3
30
29
28
27
26
25
24

22
21

— oA
— PAg
— PA;
WR
— RESET
— Dg

L Dy

— D,

— D,

L D4

— Ds

— DG

— Dy

— Vee
— PBy
— PBs
— PBs
— PB4
— PBy

8255-1 CONNECTOR-CN4
PIN | SIGNALS | PIN | SIGNALS
1 P1C4 14 P1B1
2 P1C5 15 P1A6
3 P1C2 16 P1A7
4 P1C3 17 P1A4
5 P1C0 18 P1AS
6 P1C1 19 P1A2
7 P1B6 20 P1A3
8 P1B7 21 P1A0
9 P1B4 22 P1A1
10 P1BS 23 P1Cé6
11 P1B2 24 P1C7
12 P1B3 25 GND
13 P1B0 26 VCC

« PAO-PA7 - Pins of port A

« PBO0 - PB7 - Pins of port B

« PCO0-PC7 - Pins of port C

o DO - D7 — Data pins for the transfer of data
« RESET - Reset input

« RD’ - Read input

« WR’ - Write input

o CS8’ —Chip select

o Al and A0 — Address pins

Algorithm- Square Wave Waveform

Delay Calculation

The delay time required for frequency of 200 Hz is 2500us for low and high
states. Time delay subroutines load a value in a register or register-pair and
decrement it. When the value equals 0, it returns.

The statements from DCX D to JNZ REP is repeated N times (where N is
loaded in DE register-pair). LXI D, N and RET are executed only once.

Total T states in time delay = 24N +17
System frequency = 3.072 MHz

Thus, 1 T state = 0.3255us

Time delay, td = (24N + 17) x 0.3255us

For a delay of 2500 ps,
2500x10° = (24xN + 17) x 0.3255x10°
N=319,0=013FH

Algorithm:

Start

Set control word (Port A as output port)
Set port A low

Call delay

Set port A high

Call delay

Go to Step 3

Nk W=

Program

MEMORY | MACHINE
LABEL MNEMONICS COMMENTS
ADDRESS CODE

2000 3E, 80 MVI A, 80H Load A with immediate data
80H

2002 D3, 03 OUT 03H Send content of A to CWR

2004 3E, 00 LOOP: | MVI A, 00H ggﬁd A with immediate data
Send content of Acc to

2006 D3, 00 OUT 00H output port A

2008 CD, 15,20 CALL DELAY | Call the delay subroutine

008 3E, FF MVI A, FFH Load A with immediate data
FFH
Send content of Acc to

200D D3, 00 OUT 00H output port A

200F CD, 15,20 CALL DELAY | Call the delay subroutine

2012 C3, 04, 20 JMP LOOP Jump to LOOP to repeat

DELAY SUBROUTINE

2015 11,3F,01 | DELAY: LXID,013FH | -oad DE register pair with
value of N

2018 1B REP: DCX D Decrement D

2019 TA MOV A, D Move content of D to A
OR the value of E with A

201A B3 ORA E and store the result in A

201B C2,18, 20 JNZ REP Jump on non zero to REP

201E C9 RET Return to main program

Procedure

Enter the program for square wave generation from memory location 2000H
onwards. Execute the program and observe the waveform available at the pins of
port A. (Connect the probe to the corresponding Port A signal pins of CN4
connector)

Result

Aim

EXPERIMENT 8

INTERFACING D/A CONVERTER : GENERATION OF SIMPLE

WAVEFORMS-TRIANGULAR, RAMP

Triangular Waveform

To generate a triangular wave of suitable amplitude using DAC interface.

Algorithm

. To initialize 8255, load control word (80H) in Accumulator and sent it to

CWR (03H)
2. Clear Accumulator
3. Send Accumulator content to output port A (00H)
4. Increment Accumulator data
5. If Accumulator content not equal to FFH, go to Step 3
6. Out Accumulator content to Port A (O0H)
7. Decrement Accumulator
8. If Accumulator content not equal to 00H, go to Step 6
9. Go to Step 3
Program
MEMORYMACHINE| LABEL MNEMONICS COMMENTS
ADDRESS CODE
Load Acc with immediate
2000 3E, 80 MVI A, 80H data 80H
2002 D3, 03 OUT 03H Send content of Acc to CWR
2004 AF XRA A Clear the accumulator
2005 D3, 00 LOOP1: | OUT 00H Output the contents of Acc to
the output port A
2007 3C INR A Increment Acc
Compare the content of
2008 FE, FF CPTFFH Accumulator with maximum
200A 2, 05, 20 INZ LOOP1 Jump tq LOQPI if the result of
comparison is not equal to zero

200D D3, 00 LOOP2: | OUT 00H Output the value in acc at the
port A

200F 3D DCR A Decrement Acc

2010 C2, 0D, 20 INZ LOOP?2 Jump tq LOQP2 if result of
comparison is not equal to zero

2013 C3, 05, 20 JMP LOOP1 Jump to LOOP1 to repeat the
process

ii. Ramp (Sawtooth) Waveform

Aim

To generate a sawtooth waveform of suitable amplitude using DAC interface.

Algorithm:

1.To initialize 8255, load control word (80H) in Accumulator and sent it to CWR

(03H)
2.Clear Accumulator
3.0ut Accumulator content to Port A

4 Increment Accumulator

5.Go to Step 3

(Since Accumulator is an 8-bit register, incrementing from FFH results in 00H)

Program
MEMORYMACHINE
LABEL MNEMONI MMENT
ADDRESS CODE NEMONICS COMMENTS
2000 3E, 80 MVI A, $0H Load A with immediate data
&0H
2002 D3, 03 OUT 03H Send the contents of A to output
port
EXOR the value of A with A
2004 AF XRA A itself. This resets/clear
2005 D3, 00 LOQOP: OUT 00H Output the content of A to port
2007 3C INR A Increment A
2008 C3, 05, 20 JMP LOOP Jump to LOOP

Procedure

Enter the program from memory location 2000H onwards. Connect the CN4
pins of 8255 with the DAC module. Execute the program and observe the
output between X- Out and GND pins of the DAC.

Result

The following waveforms were generated using 8085.

Triangular waveform

Ramp waveform

EXPERIMENT 9

FAMILIARIZATION OF ARDUINO IDE

Arduino is an open-source physical computing platform based on a simple
microcontroller. It is a copyright held by the original team in Italy that developed
the hardware, the IDE (Integrated Development Environment), and the software
libraries. The Arduino development environment can run on Windows, Linux, or
macOS at no cost other than the hardware itself. The software is freely
downloadable as a single bundle from www.arduino.cc, the official website for
all things Arduino. Arduino can sense its environment by receiving input from
various sensors and can interact with its surroundings by controlling lights,
motors, and other actuators.

Serial Out (TX)
Serial In (RX)

~

Reset Button

In-Circuit
Serial Programmer

ATmega328
Microcontroller

External Power Supply

............

Analog In

3.3 Voit Power Pin Pins (0-5)

5 Yolt Power Pin

The Arduino board comes with a single LED, often called the Pin 13 LED
because it is electrically connected to Digital Pin 13. This LED is the board's only
built-in indicator accessible to programs.

https://www.arduino.cc/

EXPERIMENT 10

BLINKING INTERNAL LED OF ARDUINO UNO MODULE

Aim
To blink internal LED of Arduino UNO

Procedure

In the menu of the Arduino IDE you can choose:

File » Examples = 01. Basics *» Blin

The IDE will open the code to blink the built in LED automatically.
Uploading code to the Arduino

Now our program is ready to upload to the Arduino. First we have to connect our
Arduino to the computer with the USB cable. Make sure you've selected the
correct board in the IDE:

Tools * Board * Arduino/Genuino UNO

and the correct port:

If you are not sure which port to use, try them all until you can successfully
upload your code. Then verify your code for possible errors. The IDE only checks
if it can read your code. It does not check if you have written correct code for
what you are trying to program. If everything works, the IDE shows the
SRl negeoni EE message. You can now upload your code by pressing the
upload button. The uploading is complete when the messages appear. Your
program will immediately start after uploading. As a result, you should now see
your Arduino LED blink with 1000ms intervals.

Program

void setup

{
// initialize digital pin LED BUILTIN as an output.

pinMode(LED BUILTIN, OUTPUT);
} // the loop function runs over and over again forever
void loop()

{

digitalWrite(LED BUILTIN, HIGH); // turn the LED on (HIGH is the voltage
level) delay(1000); // wait for a second

digitalWrite(LED BUILTIN, LOW); // turn the LED off by making the voltage
LOW delay(1000); // wait for a second

}

Result

BLINKING EXTERNAL LED USING ARDUINO UNO MODULE

Aim
To blink an externally connected LED using Arduino UNO

Program

int LED =8§;

void setup()

{

// initialize digital pin LED as an output.
pinMode(LED, OUTPUT);

} // the loop function runs over and over again forever

void loop()
{

digital Write(LED, HIGH); // turn the LED on (HIGH is the voltage level)
delay(1000); // wait for a second

digital Write(LED, LOW); // turn the LED off by making the voltage LOW
delay(1000); // wait for a second }

Result

EXPERIMENT 11

ARDUINO BASED VOLTAGE MEASUREMENT

Aim

To measure a DC voltage in range 0-9 V using Arduino UNO

Theory

A voltage divider circuit consisting of two resistors in series will divide the input
voltage to bring it within the range of the Arduino analog inputs.

Arduino e ’\

A
—AM—

A2 +

- .J"f.v'.‘,H

GND

q
4
4

Design

(Design the suitable values of R1 & R2, such that maximum voltage across R2
will be 5V, when actual maximum input voltage is applied across series
combination, in this case, 9V)

Program

int value = 0;
float voltage;
float R1 =100.0;
float R2 = 330.0;

void setup()
{

pinMode(A0, INPUT);
Serial.begin(9600);

b

void loop()

{

value = analogRead(A0);
voltage = value * (5.0/102)*((R1 + R2)/R2);
Serial.print("Voltage =");
Serial.println(voltage);
delay(500);

b

Circuit Diagram

¥1==
.
-
.-
-

L LR R

DG TAL (e

O® WNO) _ o

ARDUINO

Result

EXPERIMENT 12

TEMPERATURE AND HUMIDITY MONITORING OVER
THINGSPEAK USING ARDUINO UNO

Aim

To send Temperature and humidity data to Thingspeak Using Arduino and
ESP8266

Theory

Arduino Uno reads the current temperature and humidity data from DHT11 and
sends it to the ThingSpeak server for live monitoring from anywhere in the
world.

Components Required

e Arduino Uno

« ESP8266 WiFi Module
o« DHTII Sensor

o Breadboard

o Jumper Wires

Circuit Diagram

Connections

S.NO. Pin Name Arduino Pin
1 ESP8266 VCC 3.3V

2 ESP8266 RST 3.3V

3 ESP8266 CH-PD 3.3V

4 ESP8266 RX TX

5 ESP8266 TX RX

6 ESP8266 GND GND

7 DHT-11 VCC 5V

8 DHT-11 Data 5

9 DHT-11 GND GND

Step 1: ThingSpeak Setup for Temperature and Humidity Monitoring
Step 2: Create a Channel for Your Data
Step 3: API Key

Program
Programming Arduino for Sending data to ThingSpeak

AT

AT+CWMODE=1

AT+CWIAP="CircuitLoop™, "circuitdigestl01™
AT+CIPSTART="TCP","184.106.153.149" 80

AT+CIFSEND=56

AT+CIEBCLOSE

AT+CIPSTART="TCP","184.106.153.149" 80

AT+CIFSEND=56

GET /update?key=9B6ILVOYMUSVOADA:fieldl=19.7&field2=50
AT+CIPSTART="TCP","1E84.106.153.149" 80

AT+CIFSEND=56

GET /update?key=9B6ILVOYMUSVOADA:fieldl=19.7&sfield2=50
AT+CIPSTART="TCP","184.106.153.149" 80

AT+CIFSEND=56

GET /update?key=9B6ILVOYMUSVOADA:fieldl=19.7&field2=50
AT+CIPSTART="TCP","184.106.153.149" 80

AT+CIPSEND=56

GET /update?key=9B6ILVOYMUSVOADAsfieldl=19.7&field2=50
AT+CIPSTART="TCP","184.106.153.149" 80

AT+CIFSEND=56

GET /update?key=9B6ILVOYMUSVOADAsfieldl=19.8sfield2=50
AT+CIPSTART="TCP","184.106.153.149" 80

AT+CIFSEND=56

Arduino code

#include <stdlib.h>

#include <DHT.h>

#define DHTPIN 5 // DHT data pin connected to Arduino pin 5
#define DHTTYPE DHT11 //DHTI11 (DHT Sensor Type)

DHT dht(DHTPIN, DHTTYPE); // Initialize the DHT sensor
#define SSID "WiFi Name" // "WiFi Name"

#define PASS "WiFi Password" // "Password"

#define IP "184.106.153.149"// thingspeak.com ip

String msg = "GET /update?key=Your API Key"; //change it with your key...
float temp;

int hum,;

String tempC;

int error;

void setup()

{Serial.begin(115200); // use default 115200.

Serial.println("AT");
delay(5000);
if(Serial.find("OK")){

connectWiFi();}

b

void loop(){

start:
error=0;
temp = dht.readTemperature();
hum = dht.readHumidity();
char buffer[10];
tempC = dtostrf(temp, 4, 1, buffer);
updateTemp();
if (error==1){
goto start;

b
delay(5000);

b

void updateTemp(){
String cmd = "AT+CIPSTART=\"TCP\" \"";
cmd += IP;
cmd +="\",80";
Serial.println(cmd);
delay(2000);
if(Serial.find("Error")) {

return; }

cmd = msg ;
cmd +="&field1=";

cmd += tempC;

cmd += "&field2=";

cmd += String(hum);

cmd += "\r\n";

Serial.print("AT+CIPSEND=");

Serial.println(cmd.length());

if(Serial.find(">")){
Serial.print(cmd);

b

else{
Serial.printIn("AT+CIPCLOSE");
//Resend...
error=1;

}

b

boolean connectWiFi(){
Serial.println("AT+CWMODE=1");
delay(2000);
String cmd="AT+CWJAP=\"";
cmd-+=SSID;
cmd+="\"\"";
cmd+=PASS;
cmd+="\"";
Serial.println(cmd);
delay(5000);
if(Serial.find("OK")){

return true;
telse{

return false;

b
}

Result

EXPERIMENT 13

ARDUINO BASED DC CURRENT MEASUREMENT USING HALL
EFFECT CURRENT SENSOR

Aim

To measure the DC current using Hall effect current sensor and display the value
using the 12C LCD module

Theory

ACST712 is a hall effect current sensor. Hall effect will convert the magnetic field
created by the current that flows through the sensor to voltage directly
proportional to it and makes this sensor able to generate voltage linear with the
current that flows through this sensor.

Components Required
Arduino UNO

USB cable for Arduino
ACS712 sensor

DuPont wire set
Breadboard
LCD display

Circuit Diagram

Program Code

void setup() {

// put your setup code here, to run once:
Serial.begin(9600);

b

void loop() {

// put your main code here, to run repeatedly:
int adc = analogRead(AO0);

float voltage = adc*(5/1023.0);

float current = (voltage-2.5)/0.185;
Serial.print("Current : ");

Serial.println(current);

delay(300);
b

To display on LCD

#include "ACS712.h"

#include <Wire.h>

#include <LiquidCrystal 12C.h>
LiquidCrystal 12C led(0x27, 16, 2);
ACS712 sensor(ACS712 05B, A0);
//ACS712_20A for 20 Amp type
//ACS712 30A for 30 Amp type
void setup() {

Serial.begin(9600);
sensor.calibrate();

lcd.init();

lcd.backlight();

led.setCursor(0, 0);
led.print("ACS712 Demo");
b

void loop() {

float I = sensor.getCurrentAC();
if (1<0.09) {

[=0;

b

led.setCursor(0, 0);
lcd.print("Current : ");
led.print(I);

led.print(" A");

delay(300);

b

Result

EXPERIMENT 14

DIRECTIONAL CONTROL OF THE DC MOTOR USING ARDUINO

Aim
Directional Control of DC motor using Arduino

Theory

There is very basic to control the dc motor direction. all we know there is two
wires in the DC motor. one is positive and other is negative. when we connect
positive wire to positive terminal and negative wire to negative terminal the motor
will rotate clock wise.

and when we connect negative wire of motor with positive terminal and positive
wire with the negative terminal then the motor will rotate anti clock wise.

Components Required

Arduino Uno
Potentiometer
Sv Relay-4

Zero PCB board
Bc547

Circuit Diagram

| |

Program Code

void setup()

1

pinMode(2, OUTPUT);
pinMode(3, OUTPUT);
pinMode(4, OUTPUT);
pinMode(5, OUTPUT);

}
void loop()

{

digitalWrite(2, HIGH);
digitalWrite(3, HIGH);
digitalWrite(4, LOW);
digitalWrite(5, LOW);
delay(100000);
digitalWrite(2, LOW);
digitalWrite(3, LOW);
digitalWrite(4, HIGH);
digitalWrite(5, HIGH);
delay(5000);

}

Result

EXPERIMENT 15

INTERFACING OF RELAY WITH ARDUINO

Aim
To interface a relay with Arduino

Theory

Relay is an electromagnetic switch, which is controlled by small current, and used
to switch ON and OFF relatively much larger current. Means by applying small
current we can switch ON the relay which allows much larger current to flow.

Components Required

Arduino
5V Relay
USB Cable
Breadboard

Jumper Wires

Connection Diagram

Steps of working:

1. The relay module connected with three pins. We will connect the relay module
with Arduino in the normally open state. The black one of relay is usually the
ground. Connect this to the Arduino GND.

2. Connect the red wire of relay module to 5V of the Arduino.

3. Connect the signal pin of relay module to a digital pin 6 of the Arduino.

4. Upload the code

5. Observe the clicking sound of the relay that states the ON and OFF constantly

Program Code

// Arduino Relay Control Code
int relayPin=6;

#define interval 2000

void setup() {
pinMode(relayPin, OUTPUT);

b
void loop()

1

digital Write(relayPin, HIGH);
delay(interval);

digital Write(relayPin, LOW);
delay(interval);

}

Observations:

Sr no. Delay Relay Status
1.
2.

EXPERIMENT 16

BUILDING INTRUSION DETECTION SYSTEM WITH
ARDUINO AND ULTRASONIC SENSOR

Aim

To build and intrusion detection system (IDS) with Arduino and Ultrasonic
Sensor.

Theory

The HC-SR04 ultrasonic sensor uses SONAR to determine the distance of an
object just like the bats do. It offers excellent non-contact range detection with
high accuracy and stable readings in an easy to-use package from 2 cm to 400 cm
or 17 to 13 feet. It comes complete with ultrasonic transmitter and receiver
module. The ultrasonic sensor uses the reflection of sound in obtaining the time
between the wave sent and the wave received. It usually sent a wave at the
transmission terminal and receives the reflected waves. The time taken is used
together with the normal speed of sound in air (340ms-1) to determine the
distance between the sensor and the obstacle. The Ultrasonic sensor is used here
for the intruder detection. The sound via a buzzer occurs when an object comes
near to the sensor. The distance to which the sensor will respond can be easily
adjusted in the program.

Hardware Required

Arduino UNO

Red LED

Green LED

HC-SR04 Ultrasonic Sensor

Buzzer
USB cable
Breadboard

Jumper wires

Connection Diagram

Steps of working

1. Insert the Ultrasonic sensor into your breadboard and connect its Echo
pin to the digital pin 2 and the Trigger pin to digital pin 3 of the

Arduino.

2. Insert the RED and Green LED into the breadboard. Attach the positive
leg (the longer leg) of red LED to signal pin of the Buzzer via the 220-
ohm resistor, and the negative leg to GND. The green LED is connected
to digital pin 8 of the Arduino.

3. Upload the code.

4. Observe the LEDs and take some object in front of ultrasonic sensor.

5. Observe the changes in the LED and buzzer sound.

Program Code

[rEFERERRER [ptr1S10n Detection™ *** %%/

#define echo 2

#define trig 3

#define outA 8 // Red LED

#define outB 9 // Green LED

#define outC 10 // Buzzer

float duration; // time taken by the pulse to return back
float distance; // one way distance travelled by the pulse
const int intruderDistance = 10; // the minimum distance up to which the
sensor is able to sense any object

void setup() {

pinMode(trig, OUTPUT);

pinMode(echo, INPUT);

pinMode(outA, OUTPUT);

digital Write(outA, LOW);

pinMode(outB, OUTPUT);

digital Write(outB, LOW);

pinMode(outC, OUTPUT);

digital Write(outC, LOW);

Serial.begin(9600);

b

void loop() {

time_Measurement();

distance = (float)duration * (0.0343) / 2;

// calculate the one way distance travelled by the pulse
Serial.println(distance);

alarm_condition();

b

void time Measurement()

{ // function to measure the time taken by the pulse to return back

digital Write(trig, LOW);
delayMicroseconds(2);
digitalWrite(trig, HIGH);
delayMicroseconds(10);

digital Write(trig, LOW);
duration = pulseln(echo, HIGH);
b

void alarm_condition()

{ //function to execute the output commands based on the sensor

input
if(distance<=intruderDistance)
1
digital Write(outA,HIGH);
digital Write(outB,LOW);
analogWrite(outC,200);}

else

{
digitalWrite(outA,LOW);
digitalWrite (outB, HIGH);

analogWrite (outC,0);

b

}

Observation
Sr No. Object Detected | LED Buzzer
1
2

Result

