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Separately Excited DC motor

eb

Ra
La

Lf

Vf

Rf

ω
va

La–> Armature Inductance
Ra–> Armature Resistance
eb–> Back-emf
J–> Moment of Inertia
md & ml–>Developed and Load
Torques

Dynamic Equations

La
dia
dt

+Ra · ia + eb = va

eb = c1 · φ · ω

J
dω

dt
= md −ml

md = c2 · φ · ia
eb · ia = md · ω

c1 · φ · ω · ia = c2 · φ · ia · ω

Where, c1 = c2 = c for proper SI units.

∴ eb = c · φ · ω, & md = c · φ · ia
For separately excited dc motor, φ is constant.
Hence, c · φ = cφ Where, ‘cφ’ is the Back-emf constant (V/(rad/s)), as well as the
Torque constant (N-m/A).
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Transfer Functions of DC motor

Time-domain block-diagram representation
s-domain block-diagram representation
One mechanical Output (ω) and One electrical Output (ia)
One mechanical Input (ml) and One electrical input (va)

Transfer Functions

F1 (s) =
Ω(s)
Va(s)

F2 (s) =
Ia(s)
Va(s)

F3 (s) =
Ω(s)
Ml(s)

F4 (s) =
Ia(s)
Ml(s)

From these transfer functions, the various
time-responses as well as steady-state
responses can be obtained.
(Final Value Theorem)

F1 (s) =
1/cφ(

JRa
cφ

2

)
·s·(1+sTa)+1

JRa
cφ2 = Tem: electro-mechanical

time-constant

F2 (s) =
1
Ra
· sTem
sTem(1+sTa)+1

F3 (s) =
− Ra
cφ

2 ·(1+sTa)

sTem(1+sTa)+1

F4 (s) =
1/cφ

sTem(1+sTa)+1
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The plant dynamics

The Characteristic Equation:

s2 + s
(

1
Ta

)
+ 1

TaTem

Standard Second-Order Equation:

s2 + 2ζωns+ ωn
2

⇒

ωn =
1√

TaTem

ζ =
1

2

√
Tem
Ta
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The plant dynamics

The Characteristic Equation:

s2 + s
(

1
Ta

)
+ 1

TaTem

Standard Second-Order Equation:

s2 + 2ζωns+ ωn
2

In terms of motor-parameters:

ωn =
cφ√
JLa

ζ =
1

2

Ra
cφ

√
J

La
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The plant dynamics

The Characteristic Equation:

s2 + s
(

1
Ta

)
+ 1

TaTem

Standard Second-Order Equation:

s2 + 2ζωns+ ωn
2

The roots of the characteristic equation:

s1,2 = − 1

2Ta
± 1

2Ta

√
1− 4Ta

Tem

For Tem
Ta

< 4, the plant (motor) is under-damped.
The motor parameters Ra, La, J etc can be obtained from experiments.
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Why Cascade Control?

Requirements of a drive
Position control
Speed control
Acceleration control
Torque/current control
Overload protection
Four quadrant operation

Cascade control
Torque –>Acceleration –>Speed –> Position
Bandwidth requirements: High –> Low
Design steps: First –> Last
Slow response: Use feed-forward in references!
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Closed-loop Block diagram

Current
Controller

Speed
Controller

Ω∗ I∗a V ∗
a

Converter
Power Va motor

mL

Ω∗

sensor

sensor

Iafb
Ωfb Ia

Two loops
Design the faster inner-loop first : The current loop

The relevant transfer function: F2 (s) =
Ia(s)
Va(s)
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Current-loop Block diagram

Current
Controller

V ∗
a

Converter
Power Va

sensor

Iafb

I∗a
Ia(s)
Va(s)

Ia

Two loops
Design the faster inner-loop first : The current loop

The relevant transfer function: F2 (s) =
Ia(s)
Va(s)
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PI Controller

Zero steady state error
Better stability prospects compared to I - controller

K

∫
y(t)ypi(t)yp(t)e(t)

yi(t)
1
Tc

t

e(t)
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PI Controller

Zero steady state error
Better stability prospects compared to I - controller

K

∫
y(t)ypi(t)yp(t)e(t)

yi(t)
1
Tc

t

e(t)

yp(t)

external limit

Int. op without limit

PI op before external limit: ypi

PI op after external limit: y(t)

dead-zone
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PI Controller

Zero steady state error
Better stability prospects compared to I - controller

K

∫
y(t)ypi(t)yp(t)e(t)

yi(t)
1
Tc

t

e(t)

yp(t)

external limit

Int. op with limit
PI op with limit in integrator
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P-I Implementation

Analog
Rf

e(t)

-1

Cf

Rin

y(t)

y(t) =
Rf
Rin

e (t) + 1
RinCf

∫
e (t) dt

Digital

y(n) = Ke(n) +
K

T

[
e(n) + e(n− 1)

2

]
Ts + y(n− 1)

PI Controller Transfer Function:
K(1+sTc)

sTc
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Converter Gain: Full Bridge

Vp

−Vp

Vref

−Vref

t

VAO
VBO

VAB

O

S1

S4

S3

S2

Ia

Va

A B

vdc
2

vdc
2

Tc

The switching law:

S4 ON forVtri > Vref

S1 ON forVtri < Vref

S2 ON forVtri > −Vref

S3 ON forVtri > −Vref

From the geometry, we see that:

Va = Vdc
Vp
· Vref

∴

KA = VDC
Vp

The average delay, Td = Tc
2
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Current Sensor Transfer Function

Ia Iafb

1
T2

2π300
ω

2π30

k2

1+sT2

Should respond to changes in Ia
quickly
Should reject switching frequency
harmonics in the current
For large fs, the filter dynamics will
not affect the drive response
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Current Sensor Transfer Function

Let, Fx(s) = 1
Ra
· sTem
(1+sTem)(1+sTa)

= 1
Ra
· sTem
1+s(Tem+Ta)+s2TemTa

For Ta � Tem, the above T.F
will be same as the actual T.F for Ia(s)

Va(s)
.

i.e., 1
Ra
· sTem
sTem(1+sTa)+1

1
Tem

ω1
Ta

Fx(s)

First-order aprrox.
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Current Loop

Current-loop simplified:

Current
Controller

Va(s)
I∗a(s)

Ia(s)
Iafb(s)

K(1+sTc)
sTc

V ∗
a (s)

Converter

KA
1+sTd

k2
1+sT2

1/Ra
1+sTa

Where, σ = Td+T2
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Current Loop

Current-loop simplified:

Current
Controller

Va(s)
I∗a(s)

Ia(s)
Iafb(s)

K
sTc

V ∗
a (s)

Converter

KA
1+sTd

k2
1+sT2

1
Ra

By
choosing Tc = Ta. The resulting closed-loop T.F is a third-order one:

Ia(s)

I∗a(s)
=

KcKA
Ra

(1 + sT2)

sTc (1 + sTd) (1 + sT2) +
KcKAk2
Ra

This can be approximated as:

Ia(s)

I∗a(s)
≈

KcKA
Ra

(1 + sT2)

sTa (1 + sσ) + KcKAk2
Ra

Where, σ = Td+T2
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Current-loop

−40dB/dec

ω

G

−20dB/dec

−20dB/dec

1
Td+T2

1
T2

1
Td

With Tc = Ta, the approximated
characteristic equation is,

s2 + s
1

σ
+
KcKAk2

RaTa
· 1
σ
k2

comparing to the standard second-order
T.F:

ωn
2 =

KcKA

RaTa

1

σ
· k2

ζ =
1

σ

1

2ωn

For ζ = 0.707, we get:

Kc =
RaTa
k2KA

· 1

2σ
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Current-loop

With Kc chosen as above, the current-loop T.F becomes:

Ia(s)

I∗a(s)
≈ 1

k2
· (1 + sT2)

2σ2s2 + 2σs+ 1

The zero (1 + sT2) causes undesirable overshoot, and can be corrected by cancelling
with a pole.
The current loop Band-width is:

BW ≈ 1

2σ
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Speed-loop

Ωfb

Ia(s)

cφ

mL

1
sJ

Ω

k1
1+sT1

Ω∗ current

loop

Kω
1+sTω
Tω

Speed
Controller

Ia(s)∗

The
resulting T.F is a 5th order system. To proceed, we need to simplify and approximate.
The current-loop T.F is further simplified as:

Ia(s)

I∗a(s)
≈ 1

k2
· (1 + sT2)

2σ2s2 + 2σs+ 1
≈ 1

k2

1

1 + 2σs
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Speed-loop

ω

G

−40dB/dec

−20dB/dec

ωn
1
2σ

ωn =
1√
2σ
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Speed-loop Design

Ωfb

Ia(s)

cφ

mL

1
sJ

Ω

k1
1+sT1

Ω∗
Kω

1+sTω
sTω

Speed
Controller

Ia(s)∗

1
k2

1
1+2σs

We cannot follow the method used in current-loop design here, as the plant has an
integrator.
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Speed-loop Design

Symmetric Optimum method is used here.

G(s)H(s) = Kω
1 + sTω
sTω

· 1/k2

1 + 2σs
· cφ
sJ
· k1

1 + sT1

G(s)H(s) ≈ Kω
1 + sTω
sTω

· cφ
k2
· 1

sJ
· k1

1 + δs

where, δ = 2σ + T1.
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Speed-loop Design

For ωp < ωz:

ω

G

ωp ωz

−40dB/dec

−60dB/dec

-180

−40dB/dec

Phase margin is negative.
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Speed-loop Design

Phase margin is negative. For ωz < ωp:

ω

G

ωz

−40dB/dec

−20dB/dec

−40dB/dec

ωp

-180
Placing the zero before the pole will improve the phase-margin.
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Speed-loop Design

ωz =
1
Tω

Choose the speed-contoller time-constant as:

Tω = a2δ, where a > 1

Choose the cross-over frequency as the harmonic mean of the pole and zero frequencies.

ωc =
√
ωzωp

|GH(jω)| = kω

√
1+(ωTω)2

ωTω
· 1/k2√

1+(ωδ)2
· cφ
Jω
·K1

at ω = ωc, |GH(jω)| = 1
(Gain-cross over frequency).

Or, |GH(jω)| = 1 =
Kω·cφ·K1

k2J
· aδ

Which gives us,

Or, Kω = k2J
cφK1aδ

a=2 is an optimum value.
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Speed-loop Design

The phase margin can be obtained as,

Or, φM = arctan (a)− arctan
(

1
a

)
Other considerations:

Feed-forward of back emf
Rate-of-change limiter for references
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Digital Implementation:
Fixed-point Vs Floating-Point

Per-unit systems is adopted for fixed-point implementations
A base value is chosen for all variables (voltage, frequency, phase, current etc)
All variables are expressed in p.u
p.u values are converted in to digital equivalents using fixed-point arithmetic
Base conversion is done as per accuracy requirements
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Digital Implementation: An example

Let the input voltage be varying in the range 230V ± 10%.
The maximum voltage is then 357.742V
If the base voltage is chosen as 360V, the maximum possible voltage is 0.9937
p.u
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Digital Implementation: An example

In digital implementation, suppose we use a 12 bit ADC with an input voltage range
±10V .
The ADC will give digital equivalent values as follows:

ADC 12 bit p.u for 5V base p.u for 10V base
input Digital 5V base 10 V base

voltage output
+10 V 7FFh 2 p.u 1 p.u
+5 V 3FFh 1 p.u 0.5 p.u

+2.5 V 1FFh 0.5 p.u 0.25 p.u
+1.25 V FFh 0.25 p.u 0.125 p.u

0 V 000h 0 p.u 0 p.u
-1.25 V F01h -0.25 p. u -0.125 p.u
-2.5 V E01h -0.5 p.u -0.25 p. u
-5.0 V C01h -1.0 p.u -0.5 p.u
-10 V 801h -2.0 p.u -1.0 p.u
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Digital Implementation: An Example

We may choose the input voltage-sensor in different ways.
For example:

1 The nominal input voltage range of the ADC is ±10V for the maximum
expected input voltage

2 Leave enough room for the input voltage, and choose ±5V as the nominal ADC
input voltage range.

In the first case, we must choose the sensor-gain such that the ADC always get a
voltage inside its range of ±10V .
In the second case, we must choose the sensor-gain in such a way that the ADC gets a
nominal voltage of 5V when the input voltage is in the nominal range.
Here, however, we can have an unexpected higher voltage signal at the ADC input
upto 2 p.u.
Normally, 2 p.u range is kept for signals like current, speed etc.
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Some considerations

Multiplication accuracy
Intermediate calculations should be done at higher base values

Changing the base values
Sampling frequency
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FPGA based digital platform
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FPGA platform: features

80 digital I/Os
16 Analog input channels (with 6.4 µs A/D conversion time per channel)
8 Analog output channels (with a DAC settling time of 80 ns)
ALTERA EP2C70F672C8 FPGA with 68,416 logic elements
USB and CAN transceiver interfaces
On board SRAM (64K×18)
Three clocks at 20 MHz each
JTAG interface
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FPGA platform: Architecture

PC

DAC

ADC

FPGA

config.
device

Analog inputs

Analog outputs

Digital I/O
Bidirectional

Buffers

(20 MHz)

3

SRAM

Clocks

USB & CAN

Figure: Block diagram of FPGA controller
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Thank You
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