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Introduction

Inverters are the interfaces for distributed energy sources with the grid

Control of grid-connected inverters need the phase information of the
source

Phase of the source can be extracted by a Phase-Locked-Loop
PLL can be implemented in Software
There are different schemes of PLL implementation

The issues are:

e Accuracy

o Speed

o Disturbance rejection

o Effect of Harmonics, Phase unbalance etc.
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Three-Phase Inverters
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Fundamentals of inverters

Vae ~ 1
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Fundamentals of inverters
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Fundamentals of inverters
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Fundamentals of inverters

o If the switch ‘S’ is switched at high frequency, all the harmonics will
occur at the switching frequency

@ High frequency harmonics can be easily filtered by a small low-pass
filter

@ Or, if the waveform feeds an R-L load, the current will be mostly
following the average value v,y
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Sine-Triangle Pulse Width Modulation

S U/pZ\V =d- Vae J
‘/dc _ UPN ia ‘A4’ .

- If we choose the duty ratio ‘d’ as:

o d=0.540.5-m - sin (wt) |

N Then,
Upn = 0.5V4e +0.5-m - Vg, - sin (wt) J

Where, ‘m’ is modulation index,
0 <m <1, and w is the required
angular frequency.

i | vAp = VA~ v5 |
Vie " S K& g UBN -
vap = m - Vye - sin (wt) J

for:

da = 0540.5-m-sin(wt)
dg = 0.5—0.5-m-sin (wt)
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Sine-Triangle Pulse Width Modulation

Carrier

‘A’ phase ref

‘B’ phase ref
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The control law:
S4 ON: Uref > Utrg
SB ON : —Upep > Vips

For three-phase inverter, three sine wave references which are 120° phase
separated are used.
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Sine-Triangle Pulse Width Modulation

Carrier

‘A’ phase ref ‘B’ phase ref
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The control law:
S4 ON: Uref > Utrg
SB ON : —Upep > Vips

w is the angular frequency of the required output voltage.
wt = 0 is the phase of the output at any instant.
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Sine-Triangle Pulse Width Modulation

Carrier

‘A’ phase ref

‘B’ phase ref

1.0 7]

0.5

L L0

The control law:
S4 ON: Uref > Utrg
SB ON : —Upep > Vips

For other modulation schemes such as Space Vector PWM also, the phase of
the output voltage is required to derive the duty ratios.
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Grid-connected inverters

)Ugm’d

@ Voltage, frequency should be the same

@ Phase can be used to control the power-flow
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Grid-connected inverters

—_ Inverter
<— Rectifier

@ Voltages, frequency should be the same

@ Phase sequence must be the same

@ Phase can be used to control the power-flow
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Grid-connected inverters

@ The phase of the grid voltages is a must for active/reactive power
control

@ The phase can be obtained by Phase-Locked-Loop
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Phase-Locked-Loop
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Objective: To synthesize the phase/frequency information of the system ac-
curately J

@ Will a Zero-Crossing-Detector (ZCD) do the job?
@ ZCD based tracking is slow

@ Quadrature waveform technique is another method

@ Not the best method when the frequency is varying/ has harmonics
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3-phase Phase-Locked-Loop: d-q frame based PLL
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Phase Locked Loop

Vgs = Vipcosf 1
2
Vps = Vi COS (6‘ — ;) )
2
Ves = Vi COS (9 + ;) 3)
q 53
1 1
Vo = Vgs — §Ubs - §ch
b
5 v @)
d
V3
/ Vg = 7 ('Ubs - vcs) (5)
2 (e}
C

Dinesh Gopinath Analysis and Design of PLL



Synchronously rotating reference frame, assuming no zero-sequence
components,

Vg = vgcosf 4 vgsinf (6)
Vg = —Vqsinf+vgcosh @)

Let 6 be the PLL’s output, which is an estimated value. Then,
Vg cosf  sinf Vo
= A ~ . 8
H {— sind  cos 9} M ®
Substituting the expressions for v, and vg from Eqns. (4) and (5), we get:
3 .
UFES §Vm cos(f — 0) ©)
Let (0 — 0) = 6. Then when the PLL is estimating 6 closely,

3
Vg N iVm (10)
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3-Phase PLL : Contd...

Similarly we get,

Now, for very small ¢, the loop can be linearised.

2

§Vm sin(6 — 0)

3 .
3 Vi sind

LPF

VCO

(1)

12)

3
_ WV,

K (s)

o(s)

:

v=90 — ..
Now,w =4 = Ky -e.

3
Where, ¢ = v, = iVm sin 0, and K is the gain of the loop-filter.

Foré%@,sin6z§
. e:%Vm-é
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3-Phase PLL : Contd...

Closed-loop transfer function is,

_6(s)  EnKy(s)
Hels) = O(s) s+ Em_J;(f(s)

Where, E,, = %Vm.
We can use a P-I controller for K¢(s), given as:

&:Kpl-l-ST
S sT |

K(s) = K,

Then,
KpEp, - 5+ Z2Zm

KpBm

H.(s) =
(%) % == K lps 4 =2
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3-Phase PLL : Contd...

Comparing with the standard second-order form:
The natural frequency,

Wp, = KpEm ’

T

and the damping ratio,

¢ =05\EK,Emt J

Considering the sampling delays (7%), the plant T.F is ,

1 1
leant (5) |

= 7—Em
14+ 5Ts s

The open-loop T.F is then,

14 s7 1 1
HOL(S)ZKP~ |

st mgl—i—sTs
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Design of the PI controller

Using the symmetric optimum method, PI controller’s cross-over frequency,
1

We = 77
and,
T =a’T,
1 1
K,=—"-
o FE,T;
Where, « is a scalling factor.
For these values,
= a—1
2
a 2 For critical damping, ¢ = 0.707,
T, | 102.4us ¢ 0.707
T | 409.6us o 2.414
Vin 339V T, 102.4pus
K, 9.6 T | 596.73us
we | 77712 Hz Ky 7.96
we | 643.85 Hz
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An alternate method

Settling time (3 ac cycles),

Dinesh Gopinath Analysis and Design of PLL



An alternate method

Settling time (3 ac cycles),
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An alternate method

Settling time (3 ac cycles),
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An alternate method

Settling time (3 ac cycles),

. = 4
* Cwn
Kp = wnc
T 4C2
P K,E,
K
K; =P
I T,
%CLS@
Kppu) = Kp wh
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PI Controller

@ Zero steady state error

@ Better stability prospects compared to I - controller

e_ nil!) jF | y()

(&) 3

e(t)
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PI Controller

@ Zero steady state error

@ Better stability prospects compared to I - controller
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PI Controller

@ Zero steady state error

@ Better stability prospects compared to I - controller

e(t) @ /\Upi(f) jF 91/(7‘)
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PI Controller

@ Zero steady state error

@ Better stability prospects compared to I - controller
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PI Controller

@ Zero steady state error
o Better stability prospects compared to I - controller

eO_ 2 ri?) jF | v(®)

U +
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PI Controller

@ Zero steady state error

@ Better stability prospects compared to I - controller

Ypi(1) ,
e(t) @ N jF J(t)
© I» yilt)
PI op before external limit: y,,
e(t) PI op after external limit: y(t)

~~ dead-zone
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PI Controller

@ Zero steady state error

@ Better stability prospects compared to I - controller
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PI Controller

@ Zero steady state error

@ Better stability prospects compared to I - controller
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P-I Implementation

Analog
Br G

Dinesh Gopinath Analysis and Design of PLL



P-I Implementation

Analog
Br G

Digital
K |e(n)+en—1
y(n) = Ke(n) + — () + e ) Ts+y(n—1)
T 2
PI Controller Transfer Function:
K(14sT.)
sT, J
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Digital Implementation:

Fixed-point Vs Floating-Point

Per-unit systems is adopted for fixed-point implementations

A base value is chosen for all variables (voltage, frequency, phase,
current etc)

All variables are expressed in p.u

p-u values are converted in to digital equivalents using fixed-point
arithmetic

@ Base conversion is done as per accuracy requirements
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Digital Implementation: An example

@ Let the input voltage be varying in the range 230V + 10%.
@ The maximum voltage is then 357.742V

o If the base voltage is chosen as 360V, the maximum possible voltage is
0.9937 p.u
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Digital Implementation: An example

In digital implementation, suppose we use a 12 bit ADC with an input
voltage range £10V.

The ADC will give digital equivalent values as follows:

ADC 12 bit | p.ufor 5V base | p.u for 10V base
input | Digital 5V base 10 V base
voltage | output
+10V 7FFh 2pu I pu
+5V 3FFh lpu 0.5p.u
+25V 1FFh 0.5p.u 0.25 p.u
+1.25V | FFh 0.25 p.u 0.125 p.u
ov 000h Opu Opu
-1.25V | FOlh -0.25p.u -0.125 p.u
25V EOlh -0.5p.u -0.25p. u
5.0V CO01h -1.0 p.u -0.5 pu
-10V 801h -2.0p.u -1.0p.u
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Digital Implementation: An Example

We may choose the input voltage-sensor in different ways.
For example:

@ The nominal input voltage range of the ADC is =10V for the
maximum expected input voltage

@ Leave enough room for the input voltage, and choose +5V as the
nominal ADC input voltage range.

In the first case, we must choose the sensor-gain such that the ADC always
get a voltage inside its range of =10V,

In the second case, we must choose the sensor-gain in such a way that the
ADC gets a nominal voltage of 5V when the input voltage is in the nominal
range.

Here, however, we can have an unexpected higher voltage signal at the ADC
input upto 2 p.u.

Normally, 2 p.u range is kept for signals like current, speed etc.
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Some considerations

@ Multiplication accuracy
o Intermediate calculations should be done at higher base values

@ Changing the base values

e Sampling frequency
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FPGA based digital platform
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FPGA platform: features

80 digital I/Os

16 Analog input channels (with 6.4 us A/D conversion time per
channel)

8 Analog output channels (with a DAC settling time of 80 ns)
ALTERA EP2C70F672C8 FPGA with 68,416 logic elements
USB and CAN transceiver interfaces

On board SRAM (64K x 18)

Three clocks at 20 MHz each

JTAG interface
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FPGA platform: Architecture

Analog inputs
K ADC
N—] N—
Digital I/O
FPGA <:> Bidirec}ional
Buffers
Analog outputs
3 —N]
Clocks > —/1 DAC
(20 MHz)
[T
SRAM USB & CAN ( >

Figure: Block diagram of FPGA controller
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Experimental results
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Conclusion

@ Basics of Phase-Locked Loops have been explained
@ PLLs can be easily implemented in software
e Digital implementation is particularly easy in FPGA platform

@ There are several PLL methods which vary in complexity and accuracy
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Thank You

This presentation was done in IATEX and Beamer
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