SEMESTER S1

MATHEMATICS FOR ELECTRICAL SCIENCE AND PHYSICAL SCIENCE - 1 (Common to Groups B & C)

Course Code	GYMAT101	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Basic knowledge in single variable calculus and matrix operations.	Course Type	Theory

Course Objectives:

- **1.** To provide a comprehensive understanding and basic techniques of matrix theory to analyze linear systems.
- 2. To offer advanced knowledge and practical skills in solving second-order ordinary differential equations, applying Laplace transforms, and understanding Fourier series, enabling students to analyze and model dynamic systems encountered in engineering disciplines effectively.

SYLLABUS

Module No.	Syllabus Description			
1	Linear systems of equations: Gauss elimination, Row echelon form, Linear Independence: rank of a matrix, Solutions of linear systems: Existence, Uniqueness (without proof), The matrix Eigen Value Problem, Determining Eigen values and Eigen vector, Diagonalization of matrices. (Text 1: Relevant topics from sections 7.3, 7.4, 7.5, 8.1, 8.4)	9		

2	Homogeneous linear ODEs of second order, Superposition principle, General solution, Homogeneous linear ODEs of second order with constant coefficients (Method to find general solution, solution of linear Initial Value Problem). Non homogenous ODEs (with constant coefficients) - General solution, Particular solution by the method of undetermined coefficients (Particular solutions for the functions $ke^{\eta x}$, kx^n , $kcos\omega x$, $ksin\omega x$, $ke^{\alpha x}cos\omega x$, $ke^{\alpha x}sin\omega x$), Initial value Problem for	9
	Non-Homogeneous Second order linear ODE(with constant coefficients), Solution by variation of parameters (Second Order). (Text 1: Relevant topics from sections 2.1, 2.2, 2.7, 2.10)	
3	Laplace Transform, Inverse Laplace Transform, Linearity property, First shifting theorem, Transform of derivatives, Solution of Initial value problems by Laplace transform (Second order linear ODE with constant coefficients with initial conditions at t=0 only), Unit step function, Second shifting theorem, Dirac delta function and its transform (Initial value problems involving unit step function and Dirac delta function are excluded), Convolution theorem (without proof) and its application to finding inverse Laplace transform of products of functions. (Text 1: Relevant topics from sections 6.1, 6.2, 6.3, 6.4, 6.5)	9
4	Taylor series representation (without proof, assuming the possibility of power series expansion in appropriate domains), Maclaurin series representation, Fourier series, Euler formulas, Convergence of Fourier series (Dirichlet's conditions), Fourier series of 2π periodic functions, Fourier series of 2 <i>l</i> periodic functions, Half range sine series expansion, Half range cosine series expansion. (Text 1: Relevant topics from sections 11.1, 11.2, Text 2: Relevant topics from section 10.8)	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each	
• Total of 8 Questions,	module, out of which 1 question should be	
each carrying 3 marks	answered.	
	• Each question can have a maximum of 3	
(8x3 =24marks)	sub divisions.	
	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Solve systems of linear equations and diagonalize matrices.	K3
CO2	Solve homogeneous and non-homogeneous linear differential equation with constant coefficients.	K3
CO3	Compute Laplace transform and apply it to solve ODEs arising in engineering.	K3
CO4	Determine the Taylor series and evaluate Fourier series expansion for different periodic functions.	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	2	-	-	-	-	-	-	-	2
CO2	3	3	-	2	-	-	-	-	-	-	-	2
CO3	3	3	-	2	-	-	-	-	-	-	-	2
CO4	3	3	-	2	-	-	-	-	-	-	-	2

		Text Books		
Sl. N o	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Advanced Engineering Mathematics	Erwin Kreyszig	John Wiley & Sons	10 th edition, 2016
2	Calculus	H.Anton,I.Biven,S.Davis	Wiley	12 th edition, 2024

		Reference Books		
Sl. N	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Thomas' Calculus	Maurice D. Weir, Joel Hass, Christopher Heil, Przemyslaw Bogacki	Pearson	15 th edition, 2023
2	Essential Calculus	J. Stewart	Cengage	2 nd edition, 2017
3	Elementary Linear Algebra	Howard Anton, Chris Rorres	Wiley	11 th edition, 2019
4	Bird's Higher Engineering Mathematics	John Bird	Taylor & Francis	9 th edition, 2021
5	Higher Engineering Mathematics	B. V. Ramana	McGraw-Hill Education	39 th edition, 2023
6	Calculus	H. Anton, I. Biven, S.Davis	Wiley	12 th edition, 2024
7	Signals and Systems	Simon Haykin, Barry Van Veen	Wiley	2 nd edition, 2002

Video Links (NPTEL, SWAYAM)				
Module No.	Link ID			
1	https://archive.nptel.ac.in/courses/111/107/111107164/			
2	https://archive.nptel.ac.in/courses/111/104/111104031/			
3	https://archive.nptel.ac.in/courses/111/106/111106139/			
4	https://archive.nptel.ac.in/courses/111/101/111101164/			