SEMESTER S1

INTRODUCTION TO ELECTRICAL AND ELECTRONICS ENGINEERING

(Common to Group A & B)

Course Code	GXEST104	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	4:0:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Group Core-Theory

Course Objectives:

- 1. Apply fundamental concepts and circuit laws to solve simple DC/AC electric circuits
- 2. Classify series and parallel magnetic circuits
- 3. Analyse three phase AC systems
- 4. Describe the fundamental concepts of electronic components and devices
- **5.** Outline the principles of communication systems
- **6.** Identify various applications of modern electronics in the contemporary world

SYLLABUS

Module No.	Syllabus Description				
1	Elementary concepts of DC electric circuits: Current and Voltage Division Rule - Relative potential Capacitors & Inductors: V-I relations and Energy stored. Ohms Law and Kirchhoff's laws - numerical problems. Star-delta conversion (resistive networks only - derivation notrequired) - numerical problems.	Hours 11			
	Analysis of DC Electric circuits: Mesh current method - matrix representation - Solution of network equations.				

	Node voltage methods-matrix representation-solution of network equations			
	by matrix methods - numerical problems.			
	Elementary Concepts of Magnetic circuits:			
	Magnetic Circuits: Basic Terminology: MMF, field strength, fluxdensity,			
	reluctance - Comparison between electric and magnetic circuits - Series and			
	parallel magnetic circuits with composite			
	materials (numerical problems not needed)			
	Electromagnetic Induction:			
	Faraday's laws, Lenz's law- statically induced and dynamically induced emf			
	- Self-inductance and mutual inductance, coefficient of coupling (numerical			
	problems not needed)			
	Alternating Current fundamentals:			
	Generation of alternating voltages - Representation of sinusoidal			
	waveforms: frequency, period, average value, RMS value and form factor -			
	numerical problems			
2	AC Circuits: Phasor representation of sinusoidal quantities, Trigonometric,			
	Rectangular, Polar and complex forms.			
	Analysis of simple AC circuits: Purely resistive, inductive & capacitive	11		
	circuits; Inductive and capacitive reactance, concept of impedance -			
	numerical problems.			
	RL, RC and RLC series circuits- power factor, active, reactive and apparent			
	power. Simple numerical problems.			
	Three phase AC systems: Generation of three phase voltages, advantages of			
	three phase systems, star and delta connections (balanced only), relation			
	between line and phase voltages, line and			
	phase currents- numerical problems			
	Introduction to Electronic devices:			
3	Passive and active components in electronics			
3	Working of PN junction diode, V-I characteristics of PN Junction diode	13		

	Zener diode and avalanche breakdown. Basics of Zener voltage regulator			
	Block diagram of DC power supply, circuit and working of half wave, full			
	wave and bridge rectifiers, ripple factor (with and without capacitor filters)			
	Construction, working and V-I Characteristics of BJT,			
	Input output characteristics of CE configuration, Comparison of CE, CB			
	and CC configurations			
	Concept of biasing and load line			
	Transistor as a switch, Transistor as an amplifier (Circuit Diagram and			
	working)			
	RC coupled amplifier - Circuit diagram and frequency response Introduction			
	to FET, Construction and working of N-channel and P-			
	Channel MOSFETs			
	Modern Electronics and its applications:			
	General block diagram of a Communication system, Block diagramof			
	Fiber optic Communication system			
	Concept of AM and FM (No derivation required), Block diagram of AM			
	and FM super-heterodyne receiver			
	Basic concepts of Wired and Wireless communication, Blockdiagram of			
_	GSM	0		
4	Comparison of 3G, 4G, 5G and 6G communication technologies Block	9		
	diagrams of Electronic instrumentation system, DigitalMultimeter,			
	Function generator			
	Introduction to CRO and Lissajous patterns			
	Applications of modern electronics - IoT based smart homes,healthcare			
	and agriculture (Case study only)			

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Assignment/ Microproject Internal Examination-1 (Written)		Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one fullquestion out of two questions

Part A	Part B	
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module,	
• Total of 8 Questions,	out of which 1 question should be answered.	60
each carrying 3 marks	• Each question can have a maximum of 3 sub	60
(8x3 =24marks)	divisions.	
(e.g. 2 mm m)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Apply fundamental concepts and circuit laws to solve simple DC/AC electric circuits	K2				
CO2	Classify series and parallel magnetic circuits	K2				
CO3	Analyse three phase AC systems	K2				
CO4	Explain the fundamental concepts of electronic components and devices	K2				
CO5	Outline the principles of communication systems	K2				
CO6	Identify various applications of modern electronics in the contemporary world	K2				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										2
CO2	2											2
CO3	3	2										2
CO4	2	1										2
CO5	2											2
CO6	3		1			3	1					2

	Text Books								
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year					
1	Basic Electrical Engineering	D P Kothari and I J Nagrath	Tata McGraw Hill	4/e 2019					
2	Schaum's Outline of Basic Electrical Engineering	J.J.Cathey and Syed A Nasar	Tata McGraw Hill	3/e 2010					
3	Basic Electronics: Principles and Applications	Chinmoy Saha, Arindham Halder and Debarati Ganguly	Cambridge University Press	1/e 2018					
4	Basic Electrical and Electronics Engineering	D. P. Kothari and I. J. Nagrath	McGraw Hill	2/e 2020					
5	The Internet of Things: How Smart TVs, Smart Cars, Smart Homes, and Smart Cities Are Changing the World	Michael Miller	QUE	1/e 2015					
6	Basic Electronics and Linear Circuits	N N Bhargava D C Kulshreshtha and S. C. Gupta	McGraw Hill	2/e 2017					
7	Electronic Communication Systems	Kennedy and Davis	McGraw Hill	6/e 2017					

	Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Basic Electrical Engineering	D C Kulshreshtha	Tata McGraw Hill	2/e 2019						
2	Electrical Engineering Fundamentals	Del Toro V	Pearson Education	2/e 2019						
3	Basic Electrical Engineering	T. K. Nagsarkar, M. S. Sukhija	Oxford Higher Education	3/e 2017						
4	Electronics: A Systems Approach	Neil Storey	Pearson	6e 2017						
5	Electronic Devices and Circuit Theory	Robert L. Boylestad and Louis Nashelsky	Pearson	11e 2015						
6	Principles of Electronic Communication Systems	Frenzel, L. E	MGH	4e 2016						
7	Internet of Things: Architecture and Design Principles	Raj Kamal	McGraw Hill	1/e 2017						
8	Electronic Communication	Dennis Roddy and John Coolen	Pearson	4/e 2008						